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Abstract. Let A be a three-dimensional abelian variety defined over a number field K, and let ` ∈ {3, 5}.
We classify the images of the mod ` representations of those three-dimensional abelian varieties which possess

an `-torsion point modulo p for almost all primes p of K, but for which there does not exist a K-isogenous

A′ with a rational point of order `.

1. Introduction

In this paper we complete a classification begun in [3] and [4] on the local-to-global properties of torsion
points on three dimensional abelian varieties. In particular, let A be an abelian variety defined over a
number field K. Fix an integer m ≥ 2 and suppose that for a set of good primes p of density 1 the number of
Fp-rational points on Ap is divisible by m. Does there exist an abelian variety A′/K which is K-isogenous
to A with #A′tors(K) divisible by m?

This problem was first investigated by Katz in [8] where the answer was shown to be “Yes” when A
is an elliptic curve and, in the case where m is a prime number `, for two-dimensional abelian varieties.
Furthermore, it was shown that the answer is “No” when ` > 2 and A has dimension three or greater. In
[3] we classified the abelian threefolds for which this local-to-global divisibility fails for all primes ` > 5. In
[4] we showed that when ` = 2, the answer is “Yes” for three-dimensional abelian varieties and “No” for all
dimensions ≥ 4.

In this paper we complete the classification of the images of the mod ` representations of three-dimensional
abelian varieties for which this divisibility fails when ` ∈ {3, 5} and investigate their endomorphism rings.
Our main result is the following.

Theorem 1. Let A be a three-dimensional abelian variety defined over a number field K and let ` ∈ {3, 5}.
Suppose that for a set of primes p of density 1 the divisibility #Ap(Fp) ≡ 0(`) holds and that there does not
exist a K-isogenous A′ which possesses a K-rational `-torsion point. Then the Levi component of the image
of the mod ` representation of A is one of the following:

` = 3 ` = 5
Z/2× Z/2 Z/2× Z/2
D4 D4

S4 S4, S5

The proof relies on a group-theoretic reformulation of the question due to Katz in [8]. The classification
is then arrived at using a combination of group theory and explicit computations using the software package
Magma. In Section 2 we review the group-theoretic reformulation as well as the relevant background on
abelian varieties. We then divide the proof of the theorem over the next several sections based on the
structure of im ρ`. We point out that there always exists an abelian variety over some number field with the
prescribed mod ` representation. This follows easily from Galois theory. However, it is much more difficult
to determine whether such abelian varieties exist over Q. We do not address this question in this paper.

We end this section by noting that the answer to the original question remains unknown in the case of
two-dimensional abelian varieties and composite m (it suffices to take m to be a prime power by factorization
of isogenies). In fact, the answer is known to be “No” when ` is a power of 2 due to an example of Serre [8].
In a forthcoming paper [5] we revisit this problem in the case of prime powers `n, for ` > 3.

The paper is organized as follows: the next section is devoted to the group-theoretic interpretation of the
problem; we then find all counterexamples in terms of the image of the mod ` representation. In the final
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section we make some remarks about the endomorphism rings of these abelian varieties following an argu-
ment of Zarhin [14, 15], and the paper ends with an appendix by Zarhin. We point out that our classification
theorem is more general than the one given in [3]. In particular, the assumption ` > 5 in [3] was made so
that ` - # im ρ` in the majority of cases. Moreover, we do not restrict to the case im ρ` ⊂ Sp6(F`), i.e. we
do not assume det ρ` = 1.

Acknowledgements. We would like to thank Yuri Zarhin for helpful discussions and for contributing the
appendix. We would also like to thank the referee for helpful comments. A portion of this paper was written
at the 2009 PCMI conference “Arithmetic of L-functions”. We thank the PCMI for its support.

2. Group-theoretic Reformulation of the Problem

Let ` be a prime number. If n is a positive integer then we write µn for the multiplicative group of nth
roots of unity in K. We write Z`(1) for the projective limit of groups µ`i , which is a free Z`-module of rank
1 provided with the natural structure of a Galois module. Given an abelian variety A of positive dimension
d defined over a number field K (with algebraic closure K), the `-adic representation ρ` : Gal(K/K) −→
Aut(T`(A)) of the absolute Galois group on the Tate module T`(A) is the representation-theoretic formulation
of the natural action of Gal(K/K) on the points of `-power order of A. The Tate module is a rank 2d free
Z`-module, hence upon choosing a basis for T`(A) and reducing modulo `, we have the mod ` representation
encoding the action of Gal(K/K) on A[`]:

ρ` : Gal(K/K) −→ Aut(T`(A)⊗ F`) ' GL2d(F`).

The Weil pairing has as arguments elements of Tate modules of a given abelian variety and its dual.
Choosing a K-polarization on A, one gets a Galois-equivariant alternating form on T`(A) with values in Z`(1)
(or on A[`] with values in µ`). If the degree of the polarization is not divisible by ` then the corresponding
alternating bilinear form on A[`] is nondegenerate and the Galois image lies in the group of symplectic
similitudes of A[`]. However, such a polarization may not exist even replacing A by any abelian variety B
that is K-isogenous to A [6, 13]. Still, dividing (if necessary) a K-polarization by a suitable power of `,
we get a K-polarization on A that is not divisible by ` and therefore the corresponding Galois-equivariant
alternating bilinear form on A[`] is not identically zero. However, this form may be degenerate, which
means that its kernel W is a proper Galois-invariant subspace in A[`] of even dimension, while the induced
Galois-invariant alternating form on the quotient A[`]/W is nondegenerate. From now on we assume that
d = 3. Then the image of the semisimplification of ρ` is contained in GSp4(F`) ×GL2(F`) (if the kernel is
2-dimensional) or GL4(F`)×GL2(F`) (if the kernel is 4-dimensional). In the latter case we can say more.

Let λ : A→ At be a K-polarization that is not divisible by ` and let M be the `-component of its kernel.
Let M` be the kernel of multiplication by ` in M . In our case M` is four-dimensional and M is isomorphic
(as a commutative group) to a direct sum (Z/`i)2 ⊕ (Z/`j)2 with 1 ≤ i ≤ j. The polarization λ gives rise to
the corresponding Riemann form eλ - the alternating ”biadditive” nondegenerate Galois-equivariant form on
M with values in µ`j [12, Sect. 23], [11, Sect. 1]. The Galois image in Aut(M) lies in Aut(M, eλ). If i = j
then Aut(M, eλ) is isomorphic to GSp4(Z/`j) and its image in Aut(M`) is isomorphic to GSp4(Z/`). If i < j
then M` contains a Galois-invariant two-dimensional subspace `j−1M , which implies that the Galois image
in the automorphism group of the semisimplification of M` lies in GL2(F`)×GL2(F`). Taking into account
that A[`]/M` is two-dimensional, we obtain that the semisimplification of the Galois image in Aut(A[`]) lies
either in GSp4(F`)×GL2(F`) or GL2(F`)×GL2(F`)×GL2(F`). In the rest of the paper, we may omit the
latter case since it is addressed by [3, Lemma 22].

Let p be a prime of good reduction for A and denote by Fp the residue field at p. In [8], Katz shows that
the condition #Ap(Fp) ≡ 0(`) for a set of p of density 1 is equivalent to det(1 − σ) = 0 for all σ ∈ im ρ`.
Furthermore, the condition that there exists a K-isogenous abelian variety A′ such that A′ has a K-rational
`-torsion point is equivalent to the Jordan-Hölder series of T`(A)⊗F` containing the trivial representation.
Hence, A fails the local-to-global divisibility condition when im ρ` is a subgroup G of GSp2d(F`) for which
every element has 1 as an eigenvalue and such that the Jordan-Hölder series of F`[G] does not contain the
trivial representation.

Not every element of GSp2d(F`) has 1 as an eigenvalue, hence any A which fails this local-to-global di-
visibility condition must have im ρ` a proper subgroup of GSp2d(F`). We now take d = 3 and ` = 3 or 5.
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The subgroup structure of the classical groups is described in [10], and for convenience we record here the
maximal subgroups of Sp6(F3) and Sp6(F5) according to the classification scheme in [10].

Type Sp6(F3) Sp6(F5)
C1 Parabolics, Parabolics,

Sp4(F3)× SL2(F3) Sp4(F5)× SL2(F5)
C2 SL2(F3) o S3, GL3(F3).2 SL2(F5) o S3, GL3(F5).2
C3 SL2(F27).3, GU3(F3) SL2(F125).3, GU3(F5)
C4 None O3(F5)⊗ SL2(F5)
S 2.A5, SL2(F13), SL2(F13) 2.A5, 2.J2

Thus, it suffices to search inside these maximal subgroups for counterexamples. Typically these groups are
still too large to satisfy the eigenvalue condition and so we will iteratively search the lattice of maximal
subgroups for maximal counterexamples.

We remind the reader of several conventions from finite group theory. We write A.B for the middle term
of a short exact sequence of groups with kernel A and quotient B; notation A⊗ B is used for the image of
the tensor product representation of groups A and B. Finally, if P is a parabolic subgroup of a classical
group G then the Levi factor of P is the complement to the unipotent radical in P . For more details see [1,
p. 257].

3. Determination of Counterexamples

One of the results from elementary group theory that we use extensively is Goursat’s Lemma, which
states that the subgroups G of a direct product A × B are in one-to-one correspondence with quadruples
(G1, G2, G3, ψ), where G1 ⊂ A, G3 C G2 ⊂ B, and ψ : G1 −→ G2/G3 a surjective homomorphism [2]. For
the rest of the paper, a matrix group for which all g ∈ G satisfy det(1 − g) = 0 will be called a fixed-point
group. A Goursat-subgroup will be a subgroup of a direct product which itself is not direct product (so ψ is
non-trivial).

Observe that if G ⊂ GSp4(F`)×GL2(F`) is a counterexample, then G must be a Goursat-subgroup since
otherwise one of the projections would have to be a fixed-point group, giving rise to a fixed-point subgroup
of GSp4(F`) or GL2(F`). Katz proved [8] that in these cases the Jordan-Hölder series contains the trivial
representation. Moreover, we have the following estimate on the size of such a counterexample. Let P ⊂ G1

be the set of elements that do not have 1 as an eigenvalue. Then every ψ(p) must be a coset in G2/G3

consisting entirely of elements having 1 as an eigenvalue. A little algebra reveals that p ∈ kerψ and that G3

must consist entirely of elements having 1 as an eigenvalue, whence the estimate
#G1

[G2 : G3]
≥ #P + 1.(1)

For a proof of this fact, we refer the reader to [3, p. 743]. We now continue by determining the counterex-
amples in GL3(F`) since they will arise in many different contexts. In fact, this Proposition classifies all the
counterexamples that occur, and the remainder of the paper will be to show that there are no additional
counterexamples.

Proposition 1. Let ` ∈ {3, 5}, V be a three-dimensional F`-vector space, and G a maximal fixed-point
subgroup of Aut(V ). If the Jordan-Hölder series of the F`[G]-module V does not contain the trivial repre-
sentation, then G is one of the following:

Dimension of Levi(G) G
Jordan-Hölder Factors

(1,1,1) Z/2 × Z/2 `3:(Z/2 × Z/2)

(2,1) D4 `2:D4

(3) S4 S4

In addition, when ` = 5, the group G = S5 is a maximal, irreducible, fixed-point subgroup of Aut(V ).

Proof. Since the underlying question is one of eigenvalues and components of the Jordan-Hölder series, it
suffices to work with the Levi component of G. We divide the proof into three cases according to the
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dimensions of the simple factors of V . We start with the case of three one-dimensional factors, so that the
Levi component is a subgroup of (F×` )3. In this case we refer to [3, Lemma 5], which shows that the only
counterexample in this case is when G ' Z/2× Z/2 via

Z/2× Z/2 −→
(
ε1
ε2
ε1ε2

)
,

where εi ∈ {±1}. Of course, once can enlarge G by adding the full unipotent radical (so that G ' `3:(2×2)),
which preserves the counterexample.

Next, we assume that the dimensions of the simple factors are 2 and 1, so that the Levi component is
a subgroup of GL2(F`) × F×` . Note that G must be a Goursat-subgroup since otherwise it would give rise
to a fixed-point subgroup of GL2(F`), and by [8, Lemma 1] therefore has a trivial Jordan-Hölder factor.
At this point we make a distinction between ` = 3 and ` = 5; we give details when ` = 3 and omit the
nearly-identical argument for ` = 5.

When ` = 3, we look for subgroups satisfying the estimate in (1) withG1 ⊂ GL2(F3), andG3 C G2 ⊂ {±1}
(here G3 = 1 since G is a Goursat-subgroup). When G1 = GL2(F3), we have #P = 27, giving:

48
2
≥ # GL2(F3)

[G2 : G3]
6≥ 28 = #P + 1.

It follows that G1 must be contained in some maximal subgroup of GL2(F3), hence is a subgroup of D6, Q8.2,
or SL2(F3). The Jordan-Hölder factors of D6 are 1-dimensional (and in fact give rise to a counterexample
3:(2× 2) as in the argument above), so this group has already been described in the first part of the proof.
The groups Q8.2 and SL2(F3) fail the estimate (1). It is easy to check that Q8.2 contains a maximal
counterexample isomorphic to D4 via

“r”↔
(

0 −1
1 0

1

)
“s”↔

(
0 1
1 0
−1

)
.

The maximal subgroups of SL2(F3) are Z/6 and Q8, which cannot give rise to counterexamples since Z/6 is
cyclic and the only fixed-point element of Q8 is the identity.

The final case is when G acts irreducibly on V . The maximal irreducible subgroups of GL3(F3) are 13:6,
S4 × 2, and SL3(F3). The only fixed-point subgroup of 13:6 is cyclic of order 3. Moreover, S4 × 2 is not a
fixed-point subgroup since it contains a non-trivial central element, but its maximal subgroup isomorphic to
S4 is an irreducible fixed-point subgroup, hence is a counterexample. Finally, SL3(F3) is not a fixed-point
group and its maximal irreducible subgroups are 13:3 and S4, both of which were analyzed previously.

When ` = 5, we first restrict to SL3(F5). By Clifford’s Theorem, the restriction of an irreducible subgroup
of GL3(F5) to SL3(F5) remains irreducible. The maximal irreducible subgroups of SL3(F5) are 31:3, 42:S3,
and S5 (' SO3(F5)). The group 31:3 is not a fixed point group and any subgroup is cyclic, hence it
contains no counterexamples. The maximal fixed-point, irreducible subgroup of 42:S3 is S4 and is therefore
a counterexample. Finally, the group S5 is an irreducible fixed-point group. It is now easy to check (using
the isomorphism GL3(F5) ' SL3(F5) × 4) that these SL3-counterexamples are in fact the maximal GL3-
counterexamples. This completes the proof of the Proposition. �

We now proceed with an analysis of the subgroups of GSp6(F3) and GSp6(F5) based on the geometric
type of the subgroup as described in the table at the end of Section 2. In particular, we will show that there
are no further counterexamples.

3.1. Type C1. Let ` = 3 or 5. Observe that if G is a parabolic subgroup of GSp6(F`) then it suffices to
restrict to its Levi component for questions of eigenvalues and Jordan-Hölder series. Observe further that
the “shape” of a parabolic in Sp6 is the same as that in GSp6 and, upon choosing a basis, differs only by a
diagonal element of GSp6 [7]. We divide this subsection further according to the type of subgroup in C1.

3.1.1. G ⊂ P1,P2,P3. The groups Pi, i = 1, 2, 3 are the stabilizers of certain decompositions of six-
dimensional symplectic space: a product of a hyperbolic plane and symplectic 4-space; three hyperbolic
planes; and a maximal isotropic space, respectively. Let G ⊂ Pi be a counterexample, i.e. G is a fixed-point
subgroup of Pi ⊂ GSp6(F`) whose Jordan-Hölder series does not contain a trivial factor. Then the Levi
component of G ∩ Sp6(F`) is a subgroup of Sp4(F`)× {±1}, GL2(F`)× SL2(F`), or GL3(F`).
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In GSp6(F`), the Levi component of P3 consists of elements of type (g, λg∗), where λ ∈ F×` and g ∈
GL3(F`). Notice that det(1 − g) = 0 if and only if det(1 − g∗) = 0, so any fixed-point subgroup of P3

is automatically a fixed-point subgroup of P3 ∩ Sp6(F`). Moreover, a fixed-point subgroup G of P3 is a
counterexample if and only if G ∩ Sp6(F`) is. It therefore suffices to work inside Sp6(F`), but here we refer
to Proposition 1 for a list of the counterexamples in this case.

Similarly, any fixed-point subgroup of P2 is a fixed-point subgroup of P2∩Sp6(F`) and any counterexample
in P2 is a counterexample in P2∩Sp6(F`). It therefore suffices to search for counterexamples inside GL2(F`)×
SL2(F`). However, the part of the proof of Proposition 1 that determined the counterexamples with simple
factors of dimensions 2 and 1 is easily tailored to this case. We obtain identical counterexamples, where the
“G2” of Proposition 1 (which was isomorphic to {±1} ⊂ F×` ) is replaced by the center of SL2(F`).

Finally, the case of P1 is subsumed by that of Sp4(F`)× SL2(F`), which we treat in the next subsection.

3.1.2. G ⊂ GSp4(F`) × GL2(F`). Let ` ∈ {3, 5}. In this case, the setup is as follows: G1 ⊂ Sp4(F`), G3 C
G2 ⊂ SL2(F`), and ψ : G1 −→ G2/G3 a surjective homomorphism; we will later lift to GSp4(F`)×GL2(F`).
We may restrict to the case where G1 acts irreducibly since any reducible action would give rise to a subgroup
of the parabolic subgroup P2 of GSp6(F`). The maximal irreducible subgroups of Sp4(F`) are as follows [9]:

Maximal Irreducible Subgroups of Sp4(F`)
` = 3 ` = 5

SL2(F3) o S2 SL2(F5) o S2

SL2(F9).2 SL2(F25).2
21+4.Ω−4 (F2) 21+4.Ω−4 (F2)

GL2(F5).2
GU2(F25).2

2.A6

We omit SL2(F`) o S2 from our analysis since a subgroup of (SL2(F`) o S2) × SL2(F`) is also a subgroup of
SL2(F`) o S3 and will be treated fully in Section 3.2. The following Proposition and its Corollary show that
we have already determined all counterexamples of type C1.

Proposition 2. Let G ⊂ Sp4(F`) × SL2(F`) be a fixed-point subgroup. Then the projection G1 of G to
Sp4(F`) is reducible.

Proof. The proof is broken into several cases according to the maximal subgroups of Sp4(F`). Let ` ∈ {3, 5}
and consider the group SL2(F`2).2 and the associated exact sequence:

1 // SL2(F`2) // SL2(F`2).2 π // S2
// 1.

Let H be the subgroup of G ⊂ SL2(F`2).2 × SL2(F`) consisting of pairs (g1, g2) with g1 ∈ kerπ and
g2 ∈ G2 ⊂ SL2(F`). Suppose further that G (and therefore H) is a fixed-point group. We claim that H
cannot be a counterexample.

To see this, note that any counterexample H of this type must be a Goursat-subgroup of SL2(F`2) ×
SL2(F`) and therefore corresponds to a quadruple (H1, H2, H3, ψ), where kerψ is a nontrivial subgroup of
H1 consisting of all the elements without a fixed-point. The fixed-point elements of SL2(F`2) form a cyclic
subgroup of order 1, ` or `2. By the subgroup structure of the special linear groups, the only possibility is
for H1 to have only one fixed-point element. However, the estimate (1) says that strictly more than half of
the elements of H1 must have a fixed-point. Thus H1 is trivial which proves our claim.

Therefore H must be a fixed-point subgroup of SL2(F`2) × SL2(F`) that is not a counterexample. If
the trivial representation occurs in the first component, then H1 is not irreducible, and neither is G1 by
Clifford’s theorem. If the trivial representation occurs in the second component, then all elements of the non-
trivial coset in the first component must have eigenvalue 1. But all of these elements square to elements of
eigenvalue 1. Therefore all of H1 has eigenvalue 1 and by [8] cannot give rise to a counterexample. Moreover
any lift to SL2(F`2).2 will not be a counterexample.

Next suppose G1 ⊂ 21+4.Ω−4 (F2); recall that Ω−4 (2) ' A5. Due to the complicated nature of this group
we appeal to magma for eigenvalue information. In characteristic 3 there are 471 elements having 1 as an
eigenvalue, none of which come from the conjugacy classes of elements of order 5. Since at least half the
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elements of G1 must have 1 as an eigenvalue, and those without 1 as an eigenvalue must lie in a normal
subgroup, it suffices to search among the irreducible subgroups of index divisible by 5 with trivial center and
having more than half of the elements with eigenvalue 1 as candidates for G1. There are none.

In characteristic 5, there are 455 elements of eigenvalue 1, none of which come from the conjugacy classes
of order 3. A similar analysis with Magma shows there are no candidates for G1.

The remainder of the proof is devoted to the subgroups in characteristic 5. We start with the case
G1 ⊂ GU2(F25).2. Suppose first that G ⊂ GU2(F25).2 × SL2(F5) is a counterexample corresponding
to the Goursat-tuple (G1, G2, G3, ψ). Let H be subgroup of G with Goursat-tuple (H1, H2, H3, ψ) where
H1 ⊂ GU2(F25) (so that H is an index-2 subgroup of G).

If H is a counterexample, then at least half (but not all) of the elements of H1 must have 1 as an
eigenvalue. An argument nearly identical to the “(2,1)” case of Proposition 1 applies here and shows that
the only counterexamples are isomorphic to Z/2 × Z/2 or D4. Neither of these groups have an irreducible
H1. By Clifford’s theorem, we need only examine D4, but any lift of D4 to GU2(F25).2 is not a fixed-point
group and so no irreducible counterexamples arise in this way.

If H is not a counterexample, then it has a trivial Jordan-Hölder factor. If it is in the first component,
then by Clifford’s theorem any lift to GU2(F25).2 is not irreducible. If it is in the second component, then
H lifts to a Goursat-subgroup G ⊂ GU2(F25)× {±1} such that any element of G1 pairing with −1 has 1 as
an eigenvalue. Any such G1 consists entirely of elements having 1 as an eigenvalue. By [8] such a subgroup
of Sp4(F5) necessarily has a trivial Jordan-Hölder factor.

Next let G1 ⊂ GL2(F5).2 corresponding to the counterexample G ⊂ GL2(F5).2× SL2(F5). Consider the
subgroup H of G consisting of elements of the form(

A
A∗

B

)
,

where A ∈ GL2(F5) and B ∈ SL2(F5). Then [G : H] = 2 and by assumption H is a fixed-point subgroup
of Sp4(F5)× SL2(F5). If H is itself a counterexample, then H is one of the groups outlined in Section 3.1.1
(which come from Proposition 1). It is easy to check that any overgroup G of H does not have an irreducible
G1.

Alternatively, the Jordan-Hölder series of H could contain the trivial representation. If it is contained in
the “Sp4” part of H, then by Clifford’s theorem G1 is not irreducible. Thus, it suffices to check if the trivial
representation is contained in SL2(F`). If so then in order for G to be a counterexample, it must be the case
that G is partitioned into two cosets: H, and a collection of matrices of the form( a

b
−I

)
,

where each of the the 4 × 4 matrices ( 0 a
b 0 ) have 1 as an eigenvalue. It is easy to check that this forces G1

to consist entirely of elements having 1 as an eigenvalue. By [8], a subgroup of Sp4(F`) with this property
necessarily has trivial Jordan-Hölder factor. Therefore, there do not exist counterexamples of this type with
an irreducible G1.

Finally, suppose G1 ⊂ 2.A6. The maximal subgroups of 2.A6 are 2.S4, 2.S4, 2.F36, 2.A5 and 2.A5. One
first checks that the only element of 2.S4 (either copy) having 1 as an eigenvalue is the identity. The estimate

#G1

2
≥ #G1

[G2 : G3]
≥ #P + 1

implies that G1 has order at most 2 and hence is not irreducible.
The group 2.F36 contains 5 elements having 1 as an eigenvalue – the identity plus four elements coming

from a conjugacy class of elements having order 3. Applying the estimate again implies that #G1 ≤ 9 and
is divisible by 3. However, no group of order 9, 6, or 3 can give rise to a counterexample (in the non-cyclic
cases, no groups of this order have irreducible 4-dimensional representations over F5).

A similar analysis shows that no subgroup of 2.A5 gives rise to a counterexample. This finishes the proof
of the Proposition. �

Corollary 1. Let G ⊂ GSp4(F`) × GL2(F`) be a fixed-point subgroup. Then the projection G1 of G to
GSp4(F`) is reducible.
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Proof. The lift of any fixed-point subgroup H of Sp4(F`)×SL2(F`) to GSp6(F`) differs from H by a diagonal
element, which preserves the dimensions of Jordan-Hölder factors. �

3.2. Type C2. It suffices to classify the irreducible counterexamples of this type since otherwise G is con-
tained in some parabolic subgroup and these have already been enumerated. We show that there are no
such counterexamples.

Proposition 3. Let ` ∈ {3, 5} and suppose G is a subgroup of GSp6(F`) of type C2. If G acts irreducibly,
then G cannot be a counterexample.

Proof. First suppose that G ⊂ GL3(F`).2 ⊂ Sp6(F`) is an irreducible fixed-point group and consider the
exact sequence

1 // GL3(F`) // GL3(F`).2
π // GL3(F`).2/GL3(F`) // 1.

The intersection G∩kerπ is a fixed-point subgroup of GL3(F`) and by Clifford’s theorem the Jordan-Hölder
factors of the module F`[G ∩ kerψ] must have dimensions 3 and 3. However, a representative of the non-
trivial coset of GL3(F`).2/GL3(F`) is

(
0 −I
I 0

)
, which squares to the non-trivial central element of Sp6(F`),

contradicting the fixed-point assumption on G. Since Sp6(F`) contains no such irreducible counterexamples,
neither does GSp6(F`).

Next suppose G ⊂ SL2(F`) o S3 ⊂ Sp6(F`) is an irreducible counterexample. Any such G would restrict
to a fixed-point subgroup G ∩ SL2(F`)3. If G ∩ SL2(F`)3 is itself a counterexample, then it follows that
G ∩ SL2(F`) ' Z/2 × Z/2 (this is an easy consequence of the completely reducible case of Proposition 1;
alternatively it is proved in [3, Lemma 22]). It is easy to check that in this case G ' S4 with Jordan-Hölder
factors of dimensions 3 and 3. On the other hand, if G∩ SL2(F`)3 is not a counterexample, then its Jordan-
Hölder series contains a trivial factor (in fact, it contains at least 2 trivial factors since one occurs inside
SL2). By Clifford’s theorem, all factors are 1-dimensional. But the natural permutation representation on
these three hyperbolic planes decomposes into two irreducible 3-dimensional representations, hence G could
not have been irreducible. �

3.3. Type C3. In this section we analyze the field-extension subgroups of GSp6(F`) and show that they do
not contain any irreducible fixed-point subgroups.

Lemma 1. Let ` ∈ {3, 5}. The group GSp6(F`) contains no irreducible fixed-point subgroups of SL2-type.

Proof. Consider the field-extension embedding F : SL2(F`3).3 ↪→ Sp6(F`). If α ∈ F`3 , let Lα ∈ M3(F`)
be the linear transformation “multiplication by α”. If Lα has 1 as an eigenvalue, then the characteristic
polynomial cLα(x) of Lα vanishes at 1 and hence has (x− 1) as a factor. If α 6= 1, then α must be the root
of an irreducible quadratic polynomial over F`, which is impossible as α ∈ F`3 . Thus, the only α ∈ F`3 for
which Lα has 1 as an eigenvalue is α = 1. This means the fixed-point subgroups of SL2(F`3) are in one-
to-one correspondence with the fixed-point subgroups of F (SL2(F`3)). Therefore, the maximal fixed-point
subgroups of F (SL2(F`3)) are the Sylow-` subgroups, whose Jordan Hölder factors are all trivial.

When ` = 3, any lift to F (SL2(F27).3) is a 3-group, hence has trivial Jordan-Hölder factors. A further
lift to GSp6(F3) is not irreducible. Similarly, when ` = 5 a lift to F (SL2(F125).3) either has 1-dimensional
or 3-dimensional Jordan-Hölder factors and a subsequent lift to GSp6(F5) preserves these dimensions. �

For the unitary groups we proceed similarly and give details when ` = 3 and sketch the idea when ` = 5.

Lemma 2. The group GSp6(F3) contains no irreducible, fixed-point subgroups of unitary C3-type.

Proof. The maximal subgroups of GU3(F9).2 are of the form M.2, where M is a maximal subgroup (not
necessarily proper) of GU3(F9), plus an additional (irreducible) index-2 subgroup. If G is an irreducible
(six-dimensional) subgroup of GU3(F9).2 that is not contained in GU3(F9), then [G : G ∩ GU3(F9)] = 2.
Therefore, by Clifford’s theorem, any irreducible subgroup of GU3(F9).2 either restricts to an irreducible
subgroup of GU3(F9) or to one with two 3-dimensional stable subspaces.

It is known that GU3(F9) ' 4×SU3(F9) and the maximal subgroups of SU3(F9), together with dimensions
of the Jordan-Hölder factors (of it’s natural module), are as follows. Note that the dimensions are the same
for the central lifts to GU3(F9):
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Subgroup 33:8 GU2(F9) 42.S3 PSL2(F7)
Dimensions (1,1,1) (2,1) (3) (3)

The field-extension embeddings of these groups produce Jordan-Hölder factors of dimensions (2,2,2), (4,2),
(6), and (6), respectively. Altogether, this shows that a maximal irreducible (six-dimensional) subgroup of
GU3(F9).2 restricts to an irreducible subgroup of GU3(F9).

The maximal irreducible subgroups of GU3(F9) are the central lifts of PSL2(F7) and 42.S3, however it
suffices to analyze PSL2(F7) and 42.S3 since the central lifts will not be fixed-point groups. The group
PSL2(F7) is not a fixed-point group because of the elements of order 7, and any subgroup of index divisible
by 7 is not irreducible. Similarly, 42.S3 is not a fixed-point subgroup and a search of its maximal subgroups
reveals that it possesses no irreducible fixed-point subgroups.

Thus, GU3(F9) has no irreducible fixed-point subgroups and so neither does GU3(F9).2. Finally, because
the dimensions of the irreducible factors are preserved in GSp6(F3), there are no irreducible fixed-point
subgroups of GSp6(F3) of unitary C3-type. �

The structure of GU3(F25) is more complicated than that of GU3(F9); in particular, SU3(F25) is not
simple whereas SU3(F9) is, and the exceptional subgroups of SU3(F25) isomorphic to 3.A7 and 3.M10 (3
copies each) fuse in GU3(F25). Nonetheless, the analysis of this group is similar to Lemma 2 and the
conclusion is the same, so we omit the details.

3.4. Type C4. The group O3(F5)⊗ SL2(F5) is the image of the tensor-product representation of O3(F5)×
SL2(F5). Recall the isomorphisms O3(F5) ' SO3(F5)×2 ' S5×2. Let the image of G ⊂ O3(F5)×SL2(F5) in
O3(F5)⊗SL2(F5) be denoted by G. If (g1, g2) ∈ G has eigenvalues {λ1, λ2, λ3}, {µ1, µ2}, then the eigenvalues
of the image of (g1, g2) in G are the λiµj . As in the previous sections, it suffices to classify the irreducible
counterexamples. The tensor product of two irreducible representations is not necessarily irreducible, but it
suffices to analyze only the irreducible subgroups of O3(F5) and SL2(F5).

Lemma 3. Let G be a fixed-point Goursat-subgroup of O3(F5) × SL2(F5) with quadruple (G1, G2, G3, ψ).
Then G3 consists entirely of elements with eigenvalue 1.

Proof. The identity element of G1 pairs with all of G3, hence the eigenvalues of the elements of {1} ⊗ G3

are simply those of the elements of G3. This proves the lemma. �

Proposition 4. There do not exist fixed-point irreducible subgroups of O3(F5)⊗ SL2(F5).

Proof. The maximal irreducible subgroups of O3(F5) are S5, A5×2, and S4×2, while the maximal irreducible
subgroups of SL2(F5) are Z/3oZ/4 and 2.A4. In light of Lemma 3 and the fact that G is a Goursat-subgroup,
it is necessary that G3 ⊂ SL2(F5) be trivial. Moreover, this also shows that kerψ must be a fixed-point
subgroup of O3(F5).

First consider the possibilities for G2: no subgroup of S5, A5 × 2 or S4 × 2 has Z/3 o Z/4 or 2.A4 as a
quotient. Thus, G2 must be a proper irreducible subgroup of either Z/3oZ/4 or 2.A4. The only possibilities
for G2 are therefore Q8, Z/6, or Z/3. It is therefore necessary that G1 be an irreducible subgroup of S4× 2,
A5 × 2, or S5 with quotient Q8, Z/6, or Z/3 and with kerψ a fixed-point subgroup.

It is easy to rule out all but A4×2 and A4 as possibilities forG1 with Z/6 or Z/3 forG2. The tensor-product
representations (A4 × 2) ⊗ Z/6 and A4 ⊗ Z/3 give rise to fixed-point subgroups of O3(F5) ⊗ SL2(F5), but
are reducible with Jordan-Hölder dimensions 3 and 3. Thus, there are no irreducible fixed-point subgroups
of O3(F5)⊗ SL2(F5). �

3.5. Type S. The two subgroups of Sp6(F3) of type S are 2.A5 and SL2(F13). The orders of the elements
of 2.A5 in fixed-point conjugacy classes are 1, 3, and 5. The only subgroups consisting entirely of elements of
orders 1, 3, or 5 are cyclic and therefore cannot be counterexamples. There are two non-conjugate subgroups
of Sp6(F3) isomorphic to SL2(F13). Each has the property that its fixed-point conjugacy classes contain only
elements of order 3. This means any fixed-point subgroup of SL2(F13) is a 3-group. Since we are working
in characteristic 3, the Jordan-Hölder series consists of trivial modules. In each of these cases, the degree-2
lifts of the fixed-point subgroups are not irreducible (Clifford’s theorem) and hence do not give rise to any
new counterexamples.
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The subgroups of Sp6(F5) of type S are 2.A5 and 2.J2. The group 2.A5 is isomorphic to SL2(F5) and the
embedding in Sp6(F5) is via Sym5, the 5th symmetric power representation. This representation is reducible
and decomposes into Sym1 + Sym3. By Clifford’s theorem, any lift to GSp6(F5) preserves the dimensions of
the simple modules so we do not get any new counterexamples.

The group 2.J2 is not a fixed-point group and so we check its maximal subgroups. The maximal subgroups
M of J2 are as follows (so the maximals of 2.J2 are degree-2 central extensions of M ; we also list the
dimensions of the Jordan-Hölder factors of F5[2.M ]:

M Dimension

A5 (2,4)
52 : D6 (1,1,2,2)

L3(2) : 2 (6)
A5 × D5 (2,2,2)
A4 × A5 (6)

22+4 : (3 × S3) (6)
21+4
− : A5 (2,4)

3 · PGL2(F9) (6)
U3(F9) (6)

At this point we invoke the computer-algebra package magma. The following command shows that there
are 293,875 fixed-point elements of G := 2.J2 and have orders 1, 2, 3, 4, 5, and 10:

C:=ConjugacyClasses(G);
for i:=1 to #C do;
print FactoredCharacteristicPolynomial(C[i][3]);
end for;
C;

We are therefore searching for irreducible fixed-point subgroups of 2.J2 with trivial center and that can
only contain elements of orders 1, 2, 3, 4, 5, or 10. Another search using magma reveals that no such groups
exist.

4. Endomorphism Rings – Examples and Future Work

The classification above and in [3, 4] give examples of representations with interesting properties. A
natural question is: how much information about the abelian varieties can be deduced purely from the mod
` representation? In particular, can the endomorphism ring of an abelian variety A/K be computed from
im ρ`? In certain instances, the answer follows readily from a construction of Zarhin [14, 15]. In particular,
when ρ` is very simple then End(A) ' Z. In some cases, this allows for the endomorphism rings of these
abelian varieties which are counterexamples to be determined.

As a first example, we recall the main counterexample of [4]. There it was shown that if dimA = 3 and the
number of Fp-rational points is even for almost all p, then there exists a K-isogenous A′ such that #A′(K)tor
is even. In other words, there do not exist any counterexamples to the local-to-global divisibility problem
in dimension 3. In dimension 4 however, one can check that the irreducible, symplectic 8-dimensional
representation of SL3(F2) (the Steinberg representation) has det(1 − g) = 0 for all g ∈ SL3(F2). This
representation 1) is absolutely irreducible, 2) does not decompose as the tensor product of two (non-trivial)
representations of smaller degree, and 3) is not induced from a representation of a proper subgroup. Zarhin
calls this a very simple representation and in [14, 15] shows that when ρ` is very simple, then End(A) = Z
or char(K) > 0 and A is supersingular. Since K is a number field, we conclude that for our four-dimensional
example, End(A) = Z.

Similarly, the 14-dimensional representation of PSL2(F13) and the 20-dimensional representation of A7

over the field F2 are very simple representations of fixed-point subgroups of Sp14(F2) and Sp20(F2). These
give rise to counterexamples in dimensions 7 and 10. A non-example is the irreducible fixed-point sub-
group A6 of GSp16(F2). This representation is not absolutely irreducible and splits into two 8-dimensional
representations over its splitting field F4.

The counterexamples in this paper do not lend themselves immediately to this theorem since none of the
groups act irreducibly on their underlying vector space. An interesting question is whether the theorems
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of [14, 15] can be extended depending on the absolute simplicity, etc. of its Jordan-Hölder factors. The
following appendix provides a complement to the theorems of [14, 15].

Appendix A. Endomorphisms of low-dimensional abelian varieties and points of order 2

Yuri G. Zarhin
Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Let K be a field, K its algebraic closure, Gal(K) = Aut(K/K) its absolute Galois group. Let ` be a
prime different from char(K) and F` the finite prime field of characteristic `. Let X be an abelian variety
over K of positive dimension g. We write X` for the kernel of multiplication by ` in X(K); it is well known
that X` is a 2g-dimensional F`-vector space and a Galois submodule of X(K). We write

ρ̃` : Gal(K)→ Aut(X`) = AutF`(X`)

for the corresponding Galois structure homomorphism and denote by

G̃` ⊂ AutF`(X`)

its image. Clearly, X` carries the natural structure of a faithful G̃`-module. We write End(X) for the ring
of all K-endomorphisms of X.

We refer the reader to [14, 15] for the definition and basic properties of very simple representations. We
will need the following two assertions.

Lemma 4 (Lemma 2.3 of [14]). If the Galois module X` is very simple then either End(X) = Z or char(K) >
0 and X is a supersingular abelian variety.

Theorem 2. Let V be a finite-dimensional F2-vector space of positive dimension n and let G ⊂ AutF2(X2)
be a perfect subgroup such that the G-module V is absolutely simple.

If 3 ≤ n ≤ 8 then the G-module V is very simple.

Proof. Clearly, G 6= {1}. It is well known that if G has a subgroup of index m > 1 then there is a nontrivial
homomorphism from G to the full symmetric group Sm and the perfectness of G implies that Sm is not
solvable, i.e., m ≥ 5. It follows that if G has a proper subgroup of index m and m divides n then 5 ≤ m ≤ 8
and therefore

n = m = 8.
Assume that the absolutely simple G-module V is not very simple. It follows from [14, Corollary 4.2] that
one of the following two conditions holds.

(i) The G-module V splits into a tensor product V = V1 ⊗F2 V2 of two absolutely simple G-modules V1

and V2 with
dimF2(V1) > 1, dimF2(V2) > 1.

(ii) The G-module V is induced from a representation of a proper subgroup H of G.
If case (i) holds then

8 ≥ n = dimF2(V ) = dimF2(V1) · dimF2(V2).
It follows easily that dimF2(Vi) = 2 for (at least) one of indices i. Then the corresponding structure
homomorphism

G→ AutF2(Vi) ∼= GL(2,F2)
is trivial, because G is perfect and GL(2,F2) ∼= S3 is solvable. This contradicts the absolute simplicity of
Vi and rules out case (1). This implies that there exists a proper subgroup H ⊂ G of index m > 1 and an
H-module W such that V is induced from W . It follows that

n = dimF2(V ) = m · dimF2(W ).

In particular, m divides n and therefore (as we have seen above) n = m. This implies that dimF2(W ) = 1
and the corresponding structure homomorphism

H → AutF2(W ) = F∗2 = {1}
10



is trivial. But then the induced G-module V is not simple [15, Example 3.4] 1. The obtained contradiction
proves the very simplicity of V . �

Theorem 3. Suppose that ` = 2 and g = dim(X) is either 2 or 3 or 4. Assume that G̃2 contains a perfect
subgroup G such that the G-module X2 is absolutely simple. Then either End(X) = Z or char(K) > 0 and
X is a supersingular abelian variety.

Proof. Enlarging K if necessary, we may and will assume that G = G̃2, i.e.,

ρ̃2(Gal(K)) = G ⊂ AutF2(X2).

Applying Theorem 2 to V = X2 and n = 2g, we conclude that the G-module X2 is very simple. Since
ρ̃2(Gal(K)) = G, the very simplicity of the G-module X2 implies that the Gal(K)-module X2 is also very
simple. Now the result follows from Lemma 4. �
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