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Abstract. Let K be a number field and let ` > 5 be a prime. We classify abelian threefolds A defined over

K which have a non-trivial `-torsion point mod p for almost all primes p of K, but are not K-isogenous to

any abelian threefold over K with a non-trivial K-rational torsion point.

1. Introduction

Let A be an abelian variety defined over a number field K, and let S be a set of good primes p for A
of density 1; we write Ap for the reduction of A modulo p and Fp for the residue field at p. In [8], Katz
considered the following question, originally posed by Lang:

Question 1 (Lang). Let m ≥ 2 be an integer. If #Ap(Fp) ≡ 0(m) for all p ∈ S, does there exist a
K-isogenous A′ such that #A′(K)tor ≡ 0(m)?

Lang’s question is a converse of the property A(K)[m] ↪→ Ap(Fp) for any m prime to p, where A(K)[m]
is the K-rational kernel of the multiplication-by-m isogeny. In [8], Katz showed that Lang’s question has
a positive answer when A is an elliptic curve, and in the special case m = ` is prime, for two-dimensional
abelian varieties. However, he exhibited explicit counterexamples in all dimensions greater than two.

The aim of this paper is to classify all counterexamples when dimA = 3. To do this, we use the reformu-
lation of this local-global problem given in [8] in terms of the group-theoretic properties of the image of the
mod ` representation ρ` : Gal(K/K) −→ Aut(T`(A)⊗ F`). The fact that Question 1 is really a problem in
group theory is one of the key consequences of Katz’s paper.

Our counterexamples are either 1) comprised of groups of Lie type of smaller dimension, or 2) have order
independent of `. The latter category splits further: some are induced from Katz’s original counterexamples
in [8], while others are not. We call these counterexamples Katz type obstructions, and the rest Exceptional
type obstructions. Our classification is subject to several hypotheses on ρ` which will be explained in Section
4. The main result is as follows.

Theorem 1. Let A be a three-dimensional abelian variety defined over a number field K and let S be a
set of good primes for A of density 1. Suppose that ` ≥ 7, im ρ` ⊂ Sp6(F`), and that the projective image
π ◦ ρ` : GK −→ PSp6(F`) is not properly contained in the Hall-Janko group J2. If Ap(Fp)[`] 6= 0 for all
p ∈ S, and there exists no K-isogenous A′ with A′(K)[`] 6= 0, then im ρ` is given in the following tables.

Katz-Type Lie-Type Exceptional-Type
1. Z/2× Z/2 1. Dn, Dn.2 1. 2.S4, 2.S4.2 (` ≡ ±1(8))
2. S3, S3.2 2. SO3(F`),SO3(F`).2 2. A5, A5.2 (` ≡ ±1(10))
3. D4, D4.2 3. SO3(F`2)
4. A4, A4.2 4. PSL2(F`), PSL2(F`).2
5. S4, S4.2 5. GL2(F`).2
6. 2.S3 6. SL2(F`) o Z/3

Of all the counterexamples above, the most interesting are those of Lie type. Indeed, the Katz-type
counterexamples are quite similar to the original, and the associated abelian varieties can be constructed
almost identically. The Lie-type counterexamples, however, have the property that their orders depend on
`, and so are much larger subgroups of Sp6(F`). Any geometric realization of a Lie-Type counterexample
would certainly require different techniques.
Notation and Terminology. In this paper, K denotes a number field and K a fixed algebraic closure;
denote by GK the absolute Galois group Gal(K/K). For an abelian variety A/K, let T`(A) be the `-adic
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Tate module of A, with associated `-adic and mod ` representations ρ` and ρ`, respectively; the Weil pairing
on T`(A) ensures that im ρ` ⊂ GSp6(F`). We call G ⊂ GSp6(F`) an obstruction if G = im ρ` for some
abelian threefold which violates Question 1 with m = `.

We follow the standard group-theoretic convention and write A.B for the middle term of a short exact
sequence of groups with kernel A and quotient B. This notation will be recalled in section 3 of the paper.

2. Katz’s Reformulation and Counterexamples

In the case where m = ` is a prime, Katz reformulates [8, p. 481-483] Lang’s original question in
representation-theoretic terms, as follows:

Question 2. Let A be an abelian variety over a number field K. If for every g ∈ GK we have det(1−ρ`(g)) =
0 in F`, is it true that the semisimplification of T`(A)⊗ F` contains the trivial representation?

We now summarize Katz’s reformulation. The hypothesis #Ap(Fp) ≡ 0(`) is equivalent to det(I −
ρ`(Frobp)) = 0 in F`. Since S has density 1, the Čebotarev Density Theorem implies that det(I−ρ`(σ)) = 0
in F` for all g ∈ GK , i.e. every ρ`(g) ∈ im ρ` has a fixed point.

The existence of a K-isogenous abelian variety A′ having a global point of order ` is equivalent to the
existence of GK-stable lattices L′ ⊂ L in T`(A) ⊗ Q`, such that [L : L′] = ` and GK acts trivially on
the quotient L/L′. Thus the semisimplification of the mod ` representation L′ ⊗ F` contains the trivial
representation. The semisimplification is independent of the lattice L′ by the Brauer-Nesbitt theorem [5,
p. 215], hence the semisimplification of T`(A)⊗ F` contains the trivial representation.

Conversely, if the semisimplification of T`(A) ⊗ F` = T`(A)/`T`(A) contains the trivial representation,
then for some filtration

`T`(A) ⊂ · · · ⊂ Li ⊂ · · · ⊂ T`(A)

of T`(A)/`T`(A), there exists an index i such that Li/Li+1 is trivial. But Li/Li+1 ⊂ (`−1Li+1) ⊗ F`.
This produces a lattice (and therefore an abelian variety) whose reduction modulo ` contains the trivial
representation.

With the reformulation complete, we briefly describe Katz’s counterexample when dimA ≥ 3. Let Ai,
i = 1, 2, 3, be abelian varieties of dimension di defined over a number field K, where K is taken so that
Ai[`] ⊂ Ai(K), and let ε1 and ε2 be distinct quadratic characters. We have an embedding:

Z/2× Z/2 ↪→AutK(A1 ×A2 ×A3)

(P1, P2, P3) 7→ (σ1P1, σ2P2, σ1σ2P3), (σi ∈ {±1}).

Use this action to twist (A1 ×A2 ×A3)/K to get A/K with

ρ`,A(g) =
(
ε1(g)Id1

ε2(g)Id2
ε1ε2(g)Id3

)
.

No simple factor of the representation is trivial, yet every element of im ρ` has 1 as an eigenvalue.

3. Background on Symplectic Geometry

The proof of Theorem 1 relies on the subgroup structure of the symplectic group Sp6(F`). In this section
we describe the maximal subgroups of Sp6(F`), and outline a general program to find the subgroups of
Spn(F`); for a more detailed account see [10, ch. 2-4]. Recall that the notation A.B is used for any middle
term of a short exact sequence of groups with kernel A and quotient B. Following [4, p. xx], this notation
is left-associated, so that A.B.C means (A.B).C and has A as a normal subgroup.

The maximal subgroups of Sp6(F`) come in two types: those which stabilize a vector space decomposition
of F6

` , and those which do not. We refer to the former as geometric subgroups (or Lie subgroups), and to
the latter as exotic subgroups (type S in [10]). It is known that when n ≤ 5 the number of exotic subgroups
of Sp2n(F`) is bounded independently of ` [9, p. 188-219].

We now describe the various vector space decompositions which will give rise to the maximal geometric
subgroups of Sp6(F`). Let ` be a prime number and write V2n for a symplectic vector space of dimension
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2n over F` with basis {ei, fi}i=1,...,n. Let Sp2n(F`) be the subgroup of GL2n(F`) preserving the symplectic
form 〈 , 〉, where

〈ei, ej〉 = 〈fi, fj〉 = 0, and 〈ei, fj〉 = δij .

We denote by J2n the non-degenerate, skew-symmetric matrix associated to this form.
There are seven decompositions of V6 which give rise to maximal subgroups of Sp6(F`). We now give

brief descriptions of these subgroups; our treatment is based on [10, ch. 2].

3.1. Sp4(F`) × SL2(F`). The subgroup Sp4(F`) × SL2(F`) of Sp6(F`) is the stabilizer of the vector space
decomposition V6 = V4 ⊕ V2, and is embedded in Sp6(F`) via the symplectic form

( J4
J2

)
.

3.2. SL2(F`) o S3. The decomposition V6 into subspaces of the same dimension yields two maximal sub-
groups: SL2(F`) o S3 and GL3(F`).2. The former stabilizes the decomposition V6 = V ⊕3

2 , and is em-

bedded in Sp6(F`) via the form
(
J2
J2
J2

)
. The latter stabilizes the decomposition of V6 into two

totally-singular spaces, e.g. the subspaces spanned by {ei}3i=1 and {fi}3i=1 respectively. The embedding
GL3(F`).2 ↪→ Sp6(F`) is via g 7→

( g
g∗
)
, where ∗ denotes inverse-transpose, together with an involution

which permutes g and g∗.

3.3. The Field Extension Subgroups. The field Fq consisting of q = `m elements is naturally a vector
space of dimension m over F`, whence the embedding

GLn(Fq) ↪→ GLnm(F`).

The action of Gal(Fq/F`) ' Z/m on Fq is compatible with this embedding, resulting in the subgroup
GLn(Fq).m of GLnm(F`). In the case of Sp6(F`), the subgroups SL2(F`3).3 and GU3(F`2).2 obtained in
this way are maximal [10, lem. 4.3.7, 4.3.10].

3.4. O3(F`) ⊗ SL2(F`). The vector space decomposition V6 = E3 ⊗ V2, where E3 is a three-dimensional
vector space equipped with a symmetric form, yields the maximal subgroup O3(F`) ⊗ SL2(F`) of Sp6(F`).
This is the image of the tensor product representation of O3(F`)× SL2(F`), where (g, h) · v ⊗w = gv ⊗ hw.

3.5. Parabolic Subgroups. A parabolic subgroup G of Sp6(F`) is the stabilizer of a flag F of totally
singular subspaces

0 ⊂W1 ⊂ · · · ⊂Wk

(so Wk is at most three-dimensional). Since any totally singular subspace W is contained in W⊥, a flag F
gives rise to a chain of subspaces

0 ⊂W1 ⊂ · · · ⊂Wk ⊂W⊥k ⊂ · · · ⊂W⊥1 ⊂ V6.

By Witt’s Lemma [10, p. 18], any flag is conjugate to one in which the Wi are spanned by standard basis
vectors. When the length k of F is maximal, it’s stabilizer is (conjugate to) the upper-triangular subgroup
of Sp6(F`). The stabilizer of any subflag F is a block upper-triangular subgroup of Sp6(F`).

3.6. Exotic Subgroups. The exotic subgroups of the finite simple groups of Lie type of dimension ≤ 11
are classified in [9, pp. 188-219]; for PSp6(F`), ` ≥ 7 they are given in the following table:

Group Conditions
PSL2(F`) ` ≥ 7
S5 ` ≡ ±1(8)
A5 ` ≡ ±3(8)
PSL2(F7).a ` /∈ {2, 3, 7},

(
13
`

)
= 1

a = 2 if q ≡ ±1(16)
a = 1 if q ≡ ±3,±5,±7(16)

PSL2(F13) ` /∈ {2, 13},
(

13
`

)
= 1

PSU3(F9) ` ≡ ±1(12)
J2

(
5
`

)
= 1
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In addition, the groups Sp4(F`) and GU3(F`2) (which are geometric subgroups of Sp6(F`)) contain the
symplectic-type normalizer subgroups 2.24.O−4 (F2) and 3.32.SL2(F3), respectively [10, ch. 4.6]. Here the
group Z/2 (resp. Z/3) in front is the center of 2.24.O−4 (F2) (resp. 3.32.SL2(F3)). The group O−4 (F2)
(resp. SL2(F3)) acts on 24 ' F4

2 (resp. 32 ' F2
3) by conjugation.

We finish this section by recalling two theorems of basic group theory which are used extensively in the
text.

Clifford’s Theorem [5, p. 343]. Let M be an irreducible KG-module where K is an arbitrary field, and let
H C G. Then MH is a completely reducible KH-module, and the irreducible KH-submodules of MH are
all conjugates of each other.

Goursat’s Lemma [3, p. 864]. Let A and B be finite groups. The subgroups G of A×B are in one-to-one
correspondence with the tuples (G1, G2, G3, ψ) where G1 ≤ A, G2 ≤ B, G3 C G2, and ψ : G1 −→ G2/G3 is
a surjective homomorphism.

We set the following terminology for the rest of the paper: call the quadruple (G1, G2, G3, ψ) the Goursat-
tuple associated to G ⊂ A × B. If G is not a direct product, then we call G a Goursat-subgroup of A × B,
and write G = G1 •G2. If a linear representation of a group G has the property that every g ∈ G has 1 as an
eigenvalue (the fixed-point assumption), yet the semisimplification of the action of G on its natural module
does not contain the trivial representation, we call G an obstruction to the local-global principle.

4. Strategy of Proof

Katz’s reformulation (Question 2) implies that if A/K is an abelian variety for which Lang’s question
(Question 1) has a negative answer, then im ρ` = G ⊂ GSp6(F`) has the property that det(I − g) = 0
for all g ∈ G, yet the semisimplification of the action of G on T`(A) ⊗ F` does not contain the trivial
representation. Conversely, if G is any such subgroup of GSp6(F`), then G is realizable as im ρ` for some
abelian threefold over a number field. Indeed, if A/Q is any threefold such that im ρ` = GSp6(F`), then the
base field extension from Q to K := Q

G
produces a threefold over a number field which is a counterexample

to Question 1. Therefore, to classify all obstructions to the local-global principle for `-torsion on abelian
threefolds, it suffices to enumerate all subgroups G of GSp6(F`) for which det(I − g) = 0 for all g ∈ G, and
whose semisimplification does not contain the trivial representation.

The two assumptions on ρ` in Theorem 1 are that im ρ` ⊂ Sp6(F`) and ` ≥ 7. The first allows us to
capture the essence of the problem (symplectic geometric algebra in dimension 6), while simplifying some of
the computations (the determinant is 1). The first assumption is equivalent to K containing all `th roots of
unity. The second assumption is made so that char(F`) is coprime to # im ρ` in the cases where im ρ` is of
Katz type or Exceptional type. For the Lie type counterexamples almost no modular representation theory
(where `|#G) is needed.

To carry out the program, we start with the maximal subgroups of Sp6(F`):

Sp6(F`)
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SL2(F`) o S3 Parabolic O3(F`)⊗ SL2(F`)

Exotics GU3(F
`2 ) Sp4(F`)× SL2(F`) SL2(F

`3 ) GL3(F`).2

Each of these maximal subgroups turns out to be too large for every element to have a fixed point (each
contains −I, for example), so any obstruction is necessarily contained in some maximal subgroup of one
of these subgroups. Using the classification in Section 1.3 we see that these new maximal subgroups are
still too large for the fixed-point condition to hold, so we need to go to another level in the lattice. These
“level 2” maximal subgroups are also of Lie-type so we can iterate this procedure, and all obstructions will
eventually be found. Using techniques of geometric algebra, representation theory, and finite group theory
we are able to solve this problem without going too far into the maximal subgroup lattice of Sp6(F`).
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The Katz-type obstructions occur near the bottom of the subgroup lattice; in fact, each maximal subgroup
of Sp6(F`) contains a Katz-type obstruction. The other obstructions occur higher up in the lattice and
exhibit interesting properties: the orders of the Lie-type obstructions grow with `, and the Exceptional-type
obstructions give rise to abelian varieties with special properties.

We end this section with a simplifying remark. Any parabolic subgroup of Sp6(F`) is a semidirect product
of its Levi subgroup and its unipotent radical. Moreover, the Levi subgroup is precisely the semisimplification
of G. It is easy to check using the symplectic form on F6

` that the Levi subgroup is a subgroup of one of the
geometric subgroups Sp4(F`)× SL2(F`), GL3(F`), or SL2(F`)× SL2(F`)× SL2(F`).

Since we are only concerned with T`(A)⊗F` up to semisimplification, it suffices to work with semisimple
representations. Therefore, without loss of generality, we can assume that im ρ` is not parabolic. We will
sometimes refer to the semisimplification of a K[G]-module M as the semisimplification of G, when the
action of K[G] on M is clear. This terminology is not standard.

5. Proof of the main theorem: subgroups of Sp4(F`)× SL2(F`)

We divide the proof of Theorem 1 over the next five sections, based on the maximal subgroup of Sp6(F`)
containing im ρ`. It is easy to exhibit in each maximal geometric subgroup of Sp6(F`) elements without 1
as an eigenvalue (e.g. −I), so im ρ` is necessarily a proper subgroup of one of these maximal subgroups.
In this section we work with the maximal subgroup Sp4(F`) × SL2(F`). Let G ⊂ Sp4(F`) × SL2(F`) be
an obstruction corresponding to a Goursat-tuple (G1, G2, G3, ψ), so that G1 ⊂ Sp4(F`), G2 ⊂ SL2(F`),
G3 C G2, and ψ : G1 � G2/G3 is a homomorphism.

We begin by deriving some general properties of G which will be used extensively throughout the paper.
The remainder of this section is then divided according to the maximal subgroup of Sp4(F`) containing G1.
The maximal geometric subgroups of Sp4(F`) are [10, p. 72]:

GL2(F`).2, SL2(F`) o S2, SL2(F`2).2, GU2(F`2).2, and 2.24.O−4 (F2),

while the exotic subgroups of PSp4(F`) are PSL2(F`), S6, and A6 [9, p. 209]. The preimage in Sp4(F`) of
any exotic subgroup of PSp4(F`) is a central extension of degree at most 2.

With the exception of 2.24.O−4 (F2), the geometric subgroups of Sp4(F`) are analogous to those of Sp6(F`).
In this section, we will not consider the case where G1 ⊂ SL2(F`) o S2, since it is subsumed by the next
section on SL2(F`) o S3.

Before we proceed with the case-by-case analysis of the subgroups of Sp4(F`) × SL2(F`), we summarize
the results of this section in the following table.

Subgroup of Obstruction Reference
Sp4(F`)× SL2(F`)
SL2(F`2).2× SL2(F`) None Proposition 1
GU2(F`2).2× SL2(F`) Z/2× Z/2 Proposition 2

D4, Dn

GL2(F3)
(Z/2× Z/2).2 Lemmas 6 and 7
D4.2, Dn.2
GL2(F3).2

GL2(F`).2× SL2(F`) Z/2× Z/2, D4, Proposition 4
D4.2, GL2(F3), GL2(F3).2
Dn, Dn.2

2.24.O−4 (F2)× SL2(F`) None Lemmas 8 and 9
2.S6 × SL2(F`) Z/2× Z/2, S3 Proposition 5

2.(Z/2× Z/2), 2.S3

Sym3(SL2(F`))× SL2(F`) None Proposition 6

5.1. Basic Properties of Obstructions in Sp4(F`)× SL2(F`).

Lemma 1. Let G ⊂ Sp4(F`)× SL2(F`) be an obstruction given by the Goursat-tuple (G1, G2, G3, ψ). Then
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(a) G is a Goursat-subgroup, and
(b) G3 is either trivial or, when G2 is Borel, a subgroup of the Sylow-` subgroup of G2.

Proof. Katz’s result on abelian varieties in dimensions 1 and 2 [8, p. 492] implies that any subgroup of
Sp4(F`) or SL2(F`) satisfying the fixed-point assumption necessarily has a copy of the trivial representation
in its semisimplification. If G is a direct product and satisfies the fixed-point assumption, then so does G1

or G2, hence either G1 or G2 each have a copy of the trivial representation in their semisimplifications. The
semisimplification of the action of G on symplectic 6-space is comprised of that of G1 on symplectic 4-space
and G2 on symplectic 2-space (since G is embedded in Sp6(F`) in block-diagonal form), so G contains a
copy of the trivial representation in its semisimplification. Therefore G must be a Goursat-subgroup of
Sp4(F`)× SL2(F`).

For (b) we know there exists some g1 ∈ G1 without 1 as an eigenvalue, in light of Katz’s result for abelian
surfaces. The coset ψ(g1) = g2G3 must consist entirely of elements having at least one eigenvalue 1, and
hence both equal to 1 since G2 ⊂ SL2(F`). To see that G3 consists entirely of eigenvalue-1 elements, first
observe that g2 has both eigenvalues equal to 1 since G3 contains the identity of SL2(F`). Let g ∈ G3 and
pick a basis for F2

` so that g2 is upper-triangular. The following computation reveals that g has trace 2:

tr(g2g) = tr
[
( 1 e

0 1 )
(
a b
c d

)]
= a+ d+ ce = 2

tr(g2g
−1) = tr

[
( 1 e

0 1 )
(
d −b
−c a

)]
= a+ d− ce = 2

The trace and determinant are independent of basis, so every g ∈ G3 has both eigenvalues equal to 1, as
desired. �

Remark. If G2 is a Borel subgroup of SL2(F`), then G3 is either trivial or cyclic of order `. We will always
assume G3 is cyclic of order `. This assumption actually weakens inequality 1 below and will afford us the
greater flexibility to find all the obstructions. It will become clear that no obstruction can exist when G2 is
Borel and G3 is trivial.

Corollary 1. If g1 ∈ G1 does not have 1 as an eigenvalue, then g1 ∈ kerψ.

Proof. Since ψ(g1) = g2G3 consists entirely of elements having both eigenvalues equal to 1, Lemma 1(b)
implies g2 ∈ G3. �

In light of Lemma 1 it makes sense to define a subset P of G1 by

P = {g1 ∈ G1 : g1 does not have a fixed point},
and by Corollary 1, we have # kerψ ≥ #P . Since ψ : G1 −→ G2/G3 is a surjective homomorphism, the
following inequality must be satisfied whenever G is an obstruction:

#G1

[G2 : G3]
≥ #P + 1,(1)

where the extra +1 comes from the identity of G1. In order to apply this inequality to certain subgroups of
Sp6(F`), we make the following observation, whose proof is elementary.

Lemma 2. The only triples (n,m, k) ∈ Z3
≥2 satisfying nm/k ≥ (n−1)(m−1) + 1 are (2,m, 2) and (n, 2, 2).

Lemma 3. Let K be a finite field of characteristic 6= 2 and let G =
(
G1

G2
G3

)
⊂ GL3(K) be a diag-

onal subgroup (so the Gi are cyclic subgroups of K×). If every g ∈ G has 1 as an eigenvalue, and the
semisimplification of G does not contain the trivial representation, then G ' Z/2× Z/2.

Proof. Using Goursat’s Lemma twice, we can write G = (G1 •G2)•G3 (where • is allowed to denote a direct
product for this proof only), with Goursat-tuples

(G1 •G2, G3, H3, ψ) and (G1, G2, H2, φ)

associated to (G1 •G2) •G3 and G1 •G2 respectively. Denote the orders of G1, H2, and [G3 : H3] by n, m,
and k respectively.
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By [12, p. I-2, ex. 1], there exists g ∈ G1 • G2 without1 as an eigenvalue. Hence ψ(g) must be trivial,
which means H3 must have size 1 (i.e. is trivial).

There are # kerφ+ #H2 − 1 = # kerφ+m− 1 elements of G1 •G2 with 1 as an eigenvalue (the identity
was counted twice). In this case, inequality (1) becomes

nm

k
≥ nm−# kerφ−m+ 1︸ ︷︷ ︸

#P

+1.(2)

In the extreme case where # kerφ = n we have:
nm

k
≥ nm− n−m+ 1︸ ︷︷ ︸

#P

+1 = (n− 1)(m− 1) + 1.(3)

It suffices to assume n,m, k ≥ 2. Lemma 2 applies to this case, and without loss of generality we will assume
n = k = 2 and m is arbitrary. The algebraic conditions imposed by φ and ψ force m = 2. Indeed, we
can violate (3) by exhibiting one additional element of kerψ whenever m > 2: if (−1, b) ∈ kerψ, then so
is (−1, b)2 = (1, b2). If b2 is non-trivial, this gives an additional element of the kernel (if b2 is trivial, then
#G2 = 2), contradicting (3).

In general, set # kerφ = n0, for some non-trivial proper divisor n0 of n. We therefore have:
nm

k
≥ nm− n0 −m+ 1 + 1 = (n− 1)(m− 1) + 1 + (n− n0) .

Since (n− n0) > 0, there are no solutions (n,m, k) ∈ Z3
≥2 to this inequality. It is not hard to check that the

hypotheses on G are satisfied if and only if G =
(
ε1
ε2
ε1ε2

)
, where εi ∈ {±1}, which proves the lemma. �

Remark. The embedding Z/2 × Z/2 ' G ↪→ Sp6(F`) as 2 × 2 block-diagonal matrices is precisely Katz’s
counterexample for abelian threefolds.

Lemma 4. Let G ⊂ Sp4(F`) × SL2(F`) be an obstruction with Goursat-tuple
(G1, G2, G3, ψ). Then the following conditions hold for G:

(a) there exist elements of G1 without a fixed point ( i.e. none of the
eigenvalues is 1), and

(b) there are non-identity elements of G1 having a fixed point.

Proof. The proof of this lemma relies on the fact that Sp4(F`)× SL2(F`) embeds in Sp6(F`) in block form:

Sp4(F`)× SL2(F`) ↪→

 ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

 .

The uniqueness of the simple factors of the Jordan-Hölder series for F6
` as an F`[G]-module implies that the

semisimplification of G is comprised of the semisimplifications of G1 and G2 respectively.
Part (a) follows from Katz’s result for abelian surfaces [8, p. 492]. For (b), observe that if the only element

of G1 with 1 as an eigenvalue were the identity, then kerψ = G1, contradicting the assumption that G be
an obstruction. �

5.2. Case 1: G1 ⊂ SL2(F`2).2. In this section we assume G1 ⊂ SL2(F`2).2, where SL2(F`2).2 is a maximal
field extension subgroup of Sp4(F`) [10, (4.3.11)]. The following lemma compares the eigenvalues of SL2(F`2)
acting on F2

`2 to the eigenvalues on F4
` via its embedding into Sp4(F`).

Lemma 5. Let ι : SL2(F`2).2 ↪→ Sp4(F`) be the field-extension embedding. Then g ∈ SL2(F`2) has 1 as an
eigenvalue if and only if ι(g) has 1 as an eigenvalue.

Proof. An element g of SL2(F`2) has 1 as an eigenvalue if and only if it is conjugate (by S ∈ SL2(F`), say)
to ( 1 ∗

0 1 ). Apply the field-extension embedding to S−1gS and we are done. �

Corollary 2. If G1 ⊂ SL2(F`2), then G cannot be an obstruction.
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Proof. Suppose #G1 = `ek, where e ∈ {0, 1, 2} and (k, `) = 1. According to inequality (1),
#G1

[G2 : G3]
≥ #P + 1

= #G1 −#{ι(g) ∈ ι(G1) : ι(g) has a fixed point}︸ ︷︷ ︸
#P

+1

= #G1 −#{g ∈ G1 : g has a fixed point}+ 1 (by Lemma 5).

If e = 0, then the inequality becomes:
k

[G2 : G3]
≥ k − 1 + 1,

which has a solution if and only if G2 = G3, i.e. if an only if G is a direct product, contradicting Lemma
1(a).

If e ∈ {1, 2}, then G1 has at least ` elements of order `, and therefore having both eigenvalues equal to 1.
In this case the inequality is

k`e

[G2 : G3]
≥ k`e − `+ 1,

which forces G2 = G3 again. Therefore G cannot be an obstruction. �

An arbitrary subgroup G of SL2(F`2).2×SL2(F`) gives rise to a Goursat-tuple (G1, G2, G3, ψ). We define
the subgroup G0 of G as follows. There is an exact sequence [10, (4.3.11)]

1 // SL2(F`2) // SL2(F`2).2 π // Z/2 // 1,

hence there exists an index-2 subgroup G0
1 := G1∩kerπ of G1, so that G0

1 ⊂ SL2(F`2). If we set ψ0 := ψ|G0
1
,

and define G0
2 and G0

3 accordingly (so that G0
2/G

0
3 = ψ0(G0

1) and G0
3 = ψ0(kerψ0)), then G0 is the subgroup

of SL2(F`2)× SL2(F`) with Goursat-tuple (G0
1, G

0
2, G

0
3, ψ

0).

Proposition 1. No subgroup G ⊂ SL2(F`2).2× SL2(F`) can be an obstruction.

Proof. By assumption, G0 satisfies the fixed-point condition and by Corollary 2, the semisimplification of
G0 contains the trivial representation. Thus, either the semisimplification of G0

1 or G0
2 contains the trivial

representation.
If the semisimplification of G0

2 contains the trivial representation, then G0
2 = G0

3 and G0
2 is either trivial or

has order `. Since # kerψ = #G1/2, it follows that G2/G3 ' {±I}, which implies every element of G1−G0
1

must have 1 as an eigenvalue. However, g ∈ G0
1 has 1 as an eigenvalue if and only if gσ does [10, (2.1.2)].

Therefore, every element of G1 has 1 as an eigenvalue and so the semisimplification of G contains the trivial
representation.

It remains to consider the case where the trivial representation occurs in the semisimplification of G0
1. If

so, #G0
1|`2, [G1 : G0

1] = 2, and G1 − G0
1 cannot contain any element with 1 as an eigenvalue. In order for

the fixed-point condition to hold for all of G, it must be the case that G2 = G3. But this means that G2

(and hence G) contains the trivial representation in its semisimplification. This proves the proposition. �

5.3. Case 2: G1 ⊂ GU2(F`2).2. We now examine the case where G1 ⊂ GU2(F`2).2, the other field extension
subgroup of Sp4(F`). The subgroups of GU2(F`2).2 are the Borel and Cartan (and its normalizer) subgroup,
along with the exotic subgroups 2.A4, 2.S4, and 2.A5 (the determinant of the degree-2 representations of
these exotic groups is ±1, hence the representations are unitary [10, (2.3.1)]).

For any subgroup G1 ⊂ GU2(F`2).2, define G0
1 := kerπ ∩G1, relative to the split exact sequence

1 // GU2(F`2) // GU2(F`2).2 π // Z/2 // 1.

We will first find the obstructions G for which G0
1 = G1.

Proposition 2. Let G0
1 = G1 ⊂ GU2(F`2). Then G is an obstruction precisely when:

(a) G is Katz’s Z/2× Z/2-counterexample, or
(b) G1 ' D4 or G1 ' Dn (n|(`− 1)) and G2/G3 = {±I}, or
(c) G1 ' 2.S4 ' GL2(F3), and G2/G3 = {±I}.
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Proof. We use the maximal subgroup structure of GU2(F`2). If G1 is a non-split Cartan subgroup of
GU2(F`2), then G1 is cyclic. If a generator for G1 has 1 as an eigenvalue then we contradict Lemma 4(a).
On the other hand, if a generator for G1 does not have 1 as an eigenvalue, then it is in kerψ, which implies
ψ is the trivial homomorphism and G cannot be an obstruction.

If G1 is a Borel or a split Cartan subgroup of GU2(F`2), then the maximal Cartan subgroup of G1 is a
subgroup of a direct product of (non-trivial) cyclic groups, say H1 and H2. Let the maximal Cartan subgroup
of G1 be given by the Goursat-tuple (H1, H2, H3, φ), and set #H1 = n,#H3 = m so that #G1 = nm`e,
where e ∈ {0, 1, 2}, and (nm, `) = 1. Furthermore, G2 is a subgroup of SL2(F`), so write #G2 = k`f , where
f ∈ {0, 1}, and (k, `) = 1. In this case inequality (1) becomes:

nm`e

k`f/`f
≥ nm`e −# kerφ−m+ 1︸ ︷︷ ︸

#P

+1

≥ nm`e − (# kerφ)`e −m`e + 2

By the proof of Lemma 3, the only integral triple which satisfies this inequality is (2, 2, 2) (so kerφ = H),
giving us part (a) of the proposition.

Next suppose that G1 normalizes a split Cartan subgroup C of GU2(F`2), where C is given by the
Goursat-tuple (H1, H2, H3, φ). This means #G1 = 2mn and without loss of generality take m ≤ n. In this
case inequality (1) becomes:

2nm
k
≥ #P + 1

= nm−# kerφ−#H3 + 1︸ ︷︷ ︸
#g∈C w/o a fixed point

+nm−#{(a, b) ∈ C : ab = 1}︸ ︷︷ ︸
#g∈G1\C w/o a fixed point

+1

= 2nm−# kerφ−#H3 −#{(a, b) ∈ C : ab = 1}+ 2
≥ 2nm− n−m−m+ 2

= 2(n− 1)(m− 1) + n.

If n,m ≥ 2, then the only triple (n,m, k) satisfying the inequality is (2, 2, 2), which means G ' D4.
However, if m = 1 so that H3 is trivial and G1 = {(a, φ(a)) : a ∈ H1}, we get a new obstruction. Returning
to the inequality, we have

2n
k
≥ n−# kerφ︸ ︷︷ ︸

#g∈C w/o a fixed point

+n−#{a ∈ H1 : φ(a) = a−1}︸ ︷︷ ︸
#g∈G1\C w/o a fixed point

+1.

Since φ is a homomorphism, #{a ∈ H1 : φ(a) = a−1} = 1 or n. When #{a ∈ H1 : φ(a) = a−1} = 1, the
inequality is

2n
k
≥ 2n−# kerφ,

where k ≥ 2 and # kerφ < n; both conditions imply the semisimplification of G contains the trivial rep-
resentation. On the other hand, if #{a ∈ H1 : φ(a) = a−1} = n, then kerφ is trivial, giving us the
inequality

2n
k
≥ n.

Since k ≥ 2, we must have k = 2. The resulting group G is an obstruction isomorphic to the dihedral group
Dn, giving us Part (b) of the proposition. When G1 is a non-split Cartan subgroup, the inequality becomes

2n
k
≥ n− 1︸ ︷︷ ︸

#g∈C w/o a fixed point

+#{g ∈ G1 \ C w/o a fixed point}+ 1.

If G is to be an obstruction, every element of G1 − C must have 1 as an eigenvalue, which is impossible.
Finally, let G1 be an exotic subgroup of GU2(F`2). According to Appendix A, the degree-2 representations

of 2.A4 and 2.A5 fail the requirements of Lemma 4(b). Therefore, we can assume G1 ' 2.S4 ' GL2(F3).
Here, G1 has 16 elements without 1 as eigenvalue, and they all occur in the subgroup SL2(F3). That means
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# kerψ ≥ 17, whence kerψ = SL2(F3) or kerψ = GL2(F3). If kerψ = GL2(F3), then G2 contains the
trivial representation and we do not get an obstruction, while kerψ = SL2(F3) gives us Part (c) of the
proposition. �

When G1 is an arbitrary subgroup of GU2(F`2).2, define the index-2 subgroup G0 of G as in the paragraph
before Proposition 1. If G ⊂ GU2(F`2).2× SL2(F`) is an obstruction, then there are two possibilities: either
G0 is an obstruction, or it is not.

Lemma 6. If G0 is an obstruction, then so is G.

Proof. By Proposition 2, G0 is isomorphic to one of Z/2×Z/2, D4, Dn, or 2.S4. In each case, this degree-4
representation of G0 decomposes as a direct sum of two copies of the same degree-2 representation. The
generator σ of Gal(F`2/F`) acts on these 2-dimensional subspaces by multiplication by I and −I, respectively,
and Gal(F`2/F`) commutes with G0

1. Therefore, if g ∈ G0
1 has eigenvalues {λ1, λ1, λ2, λ2}, then gσ has

eigenvalues {±λ1,±λ2}. The homomorphism ψ : G1 −→ G2/G3 = {±I} defined by kerψ = kerψ0 × 〈σ〉
shows G is an obstruction. �

Lemma 7. If G0 is not an obstruction and G is an obstruction, then G is a dihedral group.

Proof. In this case, either the semisimplification of G0
1 or G0

2 contains the trivial representation. For the
latter case, the proof of Proposition 1 applies here and implies G is a dihedral group. In the former case,
the action of Gal(F`2/F`) preserves the trivial representation, so that G cannot be an obstruction. �

5.4. Case 3: G1 ⊂ GL2(F`).2. The maximal subgroup GL2(F`).2 of Sp4(F`) fits into the split exact sequence

1 // GL2(F`) // GL2(F`).2
π // S2

// 1,

where S2 −→ Out(GL2(F`)) via g 7→ g∗ (inverse-transpose). The kernel GL2(F`) of π embeds in Sp4(F`)
in 2× 2 block-diagonal form as

(
g 0
0 g∗

)
(g ∈ GL2(F`)), while the non-trivial coset of (GL2(F`).2) /GL2(F`)

consists of matrices of the form
(

0 g
−g∗ 0

)
, with g ∈ GL2(F`) [10, p. 101].

Define G0 to be the subgroup of G corresponding to the Goursat-tuple (kerπ ∩G1, H2, H3, ψ
∣∣
kerπ∩G1

); in

other words, G0 is the subgroup of G that is embedded in 2× 2 block diagonal form:

( ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

)
. If G is

an obstruction, it follows that G0 either contains a copy of the trivial representation in its semisimplification,
or is itself an obstruction. In the following lemma we show that G0 must be an obstruction.

Proposition 3. Let G ⊂ Sp4(F`)×SL2(F`) where G1 ⊂ GL2(F`).2, G2 ⊂ SL2(F`), and let G0 be as above.
Then the semisimplification of G contains the trivial representation if and only if the semisimplification of
G0 does.

Proof. If the semisimplification of G contains the trivial representation, then so does any subgroup. Con-
versely, if G0 contains the trivial representation, then one of the semisimplifications of kerπ ∩ G1 or H2

contains the trivial representation. Let # kerπ ∩G1 = n, and write

G1 =
{(

Ai 0
0 A∗i

)
,
(

0 Bi

−B∗i 0

)}
,

where i = 1, . . . , n and Ai, Bi ∈ GL2(F`).
If kerπ∩G1 contains the trivial representation then each Ai has 1 as an eigenvalue (or each A∗i does, and

the proof in this case is exactly the same). Therefore
(

Bi

−B∗i

)2

has 1 as an eigenvalue for each i, hence

so does −BiB∗i . If fi(x) and gi(x) are the characteristic polynomials of −BiB∗i and
(

0 Bi

−B∗i 0

)
, respectively,

then gi(x) = fi(x2). By assumption fi(1) = 0 for all i, hence gi(1) = 0 for all i. This shows every g ∈ G1

has 1 as an eigenvalue; apply Lemma 4(a) to get that G contains the trivial representation.
Next suppose the trivial representation occurs in the semisimplification of H2. If G2 = H2 then we are

done, so we may assume [G2 : H2] = 2 so that G2/H2 ' {±I}. In order for G to satisfy the fixed-point
10



condition, every
(

0 Bi

−B∗i 0

)
∈ G1 has 1 as an eigenvalue. By the preceding argument, this forces all of G1 to

have 1 as an eigenvalue, contradicting Lemma 4(a) and finishing the proof. �

Now suppose G0 is an obstruction. Proposition 2 can be adapted to this case to show G0 is isomorphic
to one of Z/2× Z/2, D4, 2.S4, or Dn. It remains to solve the extension problem

1 −→ G0 −→ G −→ S2 −→ 1

for obstructions G0 and G.

Proposition 4. With all notation as in Proposition 3, if G and G0 are obstructions then G2/G3 = {±I}
and

(i) G0 ∩G1 ' Z/2× Z/2, and G1 ' D4, or
(ii) G0 ∩G1 ' D4, and G1 ' D4.2, or
(iii) G0 ∩G1 ' 2.S4, and G1 ' 2.S4.2, or
(iv) G0 ∩G1 ' Dn, and G1 ' Dn.2.

Proof. Write kerπ ∩ G1 = H0.2, where H0 ' Z/2, C4, SL2(F3), or Cn (a cyclic group of order n) when
kerπ ∩ G1 ' Z/2 × Z/2, D4, GL2(F3), or Dn respectively. In each case, the homomorphism φ of the
Goursat-tuple attached to G0 is defined by kerφ = H0.

If we write G1 = G0.2 = H0.〈τ〉.〈σ〉 (so that τ and σ each generate a group of order 2), then this means
kerψ = {H0, H0.〈σ〉}.

Therefore G2/G3 has order 2 and one checks that the fixed-point condition holds for all G. This proves
the proposition. �

5.5. Case 4:G1 ⊂ 2.24.O−4 (F2). Here we suppose G1 normalizes the extra-special 2-group 2.24, which is
isomorphic to the central product D4 ◦Q8 [10, p. 153-154] (where D4 and Q8 are the dihedral and quaternion
groups of order 8, respectively). Each group has an irreducible degree-2 representation:

D4 =
〈
x =

(
0 −1
1 0

)
, y =

(
1 0
0 −1

)〉
Q8 =

〈
x =

(
0 −1
1 0

)
, y =

(
a b
b −a

)〉
,

where a, b ∈ F` satisfy a2 + b2 = −1. The centers of D4 and Q8 each have order 2, so the central product
D4 ◦Q8 is with respect to the non-trivial homomorphism Z(D4) −→ Z(Q8).

There is an embedding 2.24 ↪→ Sp4(F`) given by the image of the tensor product representation of the
two irreducible representations above [10, p. 151]. Of the 32 elements of 2.24, there are 14 without 1 as an
eigenvalue in this representation. The subgroup generated by these 14 elements is all of 2.24.

If ` ≡ ±1(8), then the normalizer of 2.24 in Sp4(F`) is O−4 (F2); otherwise it is Ω−4 (F2), where Ω−4 (F2) ' A5

is the unique index-2 subgroup of O−4 (F2) ' S5 [10, § 2.5], [10, p. 44]. The following lemmas show that
neither 2.24.O−4 (F2) nor 2.24.Ω−4 (F2) are obstructions.

Lemma 8. Let G ⊂ Sp4(F`)×SL2(F`) be given by the Goursat-tuple (G1, G2, G3, ψ), with G1 = 2.24.Ω−4 (F2).
Then G is not an obstruction.

Proof. Suppose G were an obstruction. Since the subgroup of 2.24 generated by the elements without 1 as
an eigenvalue is all of 2.24, kerψ contains 2.24. Since (2.24.Ω−4 (F2))/2.24 ' A5 is simple, either kerψ = 2.24

or kerψ = 2.24.Ω−4 (F2). The former case is impossible since A5 is not a subgroup of SL2(F`). In the latter
case Lemma 1(b) implies G2 = G3 consists entirely of elements having 1 as an eigenvalue, contradicting the
assumption that G is an obstruction. �

Lemma 9. Let G ⊂ Sp4(F`)×SL2(F`) be given by the Goursat-tuple (G1, G2, G3, ψ), with G1 = 2.24.O−4 (F2)
(so ` ≡ ±1(8)). Then G is not an obstruction.

Proof. Fix a square root α of 2. By the proof of Lemma 7, ifG were an obstruction, then kerψ = 2.24.Ω−4 (F2).
The matrix

g = α−1

(
1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

)
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is an element of 2.24.O−4 (F2) − 2.24.Ω−4 (F2) [10, p. 155] which does not have 1 as an eigenvalue. It follows
that kerψ = G1 and G2 = G3 consists entirely of elements having 1 as an eigenvalue, contradicting the
assumption that G is an obstruction. �

5.6. Case 5: The Exotic Subgroups A6, S6, and PSL2(F`). Recall that the exotic subgroups (type S
in [10]) of a finite group of Lie type are maximal subgroups which do not fall into the any of the classes Ci,
i = 1, . . . , 8. According to [9, p. 209], the exotic subgroups of PSp4(F`) when ` ≥ 7 are A6 (` ≡ ±5 (12)), S6

(` ≡ ±1 (12)), and PSL2(F`) (via the third symmetric power representation). These F`-representations of
A6 and S6 are the reductions mod ` of the ordinary degree-4 representations (since ` ≥ 7). The preimages
under the map π : Sp4(F`) −→ PSp4(F`) of A6 and S6 are non-trivial double covers denoted by 2.A6 and
2.S6 respectively.

The Schur Multiplier of PSL2(F`) has order 2 and PSL2(F`) is perfect, so by [7, thm. 2.1.19] there are
only two inequivalent, degree-2 central extensions of PSL2(F`): the trivial extension and SL2(F`).

Next we recall a theorem of Schur on the double covers of Sn and then finish this section by analyzing
the subgroups 2.A6, 2.S6, and SL2(F`) of Sp4(F`).

Theorem 2 (Schur). [7, p. 103] Given n ≥ 4, define the groups S∗n and S∗∗n as follows:

S∗n = 〈g1, . . . , gn−1, z : g2
i = (gigi+1)3 = (gkgl)2 = z, z2 = [z, gi] = 1〉

S∗∗n = 〈g1, . . . , gn−1, z : g2
i = (gigi+1)3 = 1, (gkgl)2 = z, z2 = [z, gi] = 1〉

(1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, k ≤ l − 2)

If n ≥ 4 and n 6= 6, then there exist exactly two non-isomorphic covering groups of Sn, namely S∗n and S∗∗n ,
defined above; S∗6 is the only (up to isomorphism) covering group of S6.

We omit the proof of the following lemma.

Lemma 10. Let H be a subgroup of S6 such that #H ≤ 60, and H contains ≥ #H/2 transpositions. Then
H contains 1, 2, or 3 transpositions and is isomorphic to S2, S2 × S2, or S3 respectively.

Proposition 5. Suppose G ⊂ Sp4(F`)×SL2(F`) is an obstruction given by the Goursat-tuple (G1, G2, G3, ψ)
with G1 ⊂ 2.S6 ⊂ Sp4(F`). Then G is isomorphic to one of S2 × S2, 2.(S2 × S2), S3, or 2.S3.

Proof. First, ifG1 ⊂ 2.A6 then the only element of the degree-4 representation ofG1 having 1 as an eigenvalue
is the identity (Appendix A). By Lemma 4(b), G cannot be an obstruction.

According to Appendix A, the only non-trivial elements of the degree-4 representation of 2.S6 having 1
as an eigenvalue belong to the conjugacy class 2B0. Let π : 2.S6 −→ S6 be the natural projection. The
conjugacy class 2B0 of 2.S6 is induced from the conjugacy class 2B of S6 which contains the transpositions.
If z generates the center of 2.S6, and gi ∈ 2B0, then zgi has 1 as an eigenvalue also since the characteristic
polynomials of z and gi are (x + 1)4 and (x − 1)2(x + 1)2 respectively, whence giz ∈ 2B0. It follows that
#2B0 = 30. Moreover, the relations of Theorem 2 tell us that the product of any two disjoint transpositions
in S6 lifts to an element of order 4 in 2.S6 and therefore does not have eigenvalue 1. By inequality (1), #G1

is at most 60:
#G1

2
≥ #G1

[G2 : G3]
≥ #G1 − 31︸ ︷︷ ︸

#P

+1 ≥ #G1 − 30.

Set G1 := π(G1) so that #G1 = #G1, or #G1 = 2#G1. In either case G1 defines a subgroup of S6 with
the property that G1 contains ≥ #G1/2 transpositions and #G1 ≤ 60. Lemma 10 implies G1 is isomorphic
to one of S2, S2 × S2, or S3.

Suppose G1 does not contain the center Z = 〈z〉 of 2.S6, so that G1 ' G1. If G1 ' S2, then by Lemma 4(a)
G cannot be an obstruction. If G1 ' S2×S2, then we get an obstruction G with Goursat-tuple (G1, G2, G3, ψ)
by defining kerψ to be generated by the product of the two disjoint transpositions in G1. Lastly, if G1 ' S3,
then we get another obstruction G with Goursat-tuple (G1, G2, G3, ψ) by defining kerψ ' A3.

It remains to consider the cases where Z ⊂ G1, so that #G1 = 2#G1. If G1 ' S2, then G1 ' S2 × Z,
and the homomorphism ψ : G1 −→ {±I} with kerψ = Z defines an obstruction. Next, if G1 ' S2 × S2,
then G1 has order 8 and contains an element of order 4, namely the preimage of the product of the disjoint
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transpositions. We obtain an obstruction G of order 8 with Goursat-tuple (G1, G2, G3, ψ) by defining kerψ
to be cyclic of order 4.

Finally, suppose that G1 ' S3. The composite homomorphism

G1
π // G1/Z ' S3

ε // {±I}

defines an obstruction G ' 2.S3, which finishes the proof of the proposition. �

The group PSL2(F`) does not have a degree-4 F`-representation when ` ≥ 7, which means the central
extension 2.PSL2(F`) is isomorphic to SL2(F`). The following proposition shows that no obstruction G ⊂
Sp4(F`)× SL2(F`) can have G1 ⊂ SL2(F`).

Proposition 6. Let G ⊂ Sp4(F`) × SL2(F`) be given by the Goursat-tuple
(G1, G2, G3, ψ), with G1 ⊂ Sym3(SL2(F`)). Then G is not an obstruction.

Proof. The exotic subgroup SL2(F`) of Sp4(F`) is the image of third symmetric-power representation Sym3

[9, p. 70]. If g ∈ SL2(F`) has eigenvalues λ±1 (acting on it’s natural module), then Sym3(g) has eigenvalues
λ±3, λ±1. Therefore, an element Sym3(g) of Sym3(SL2(F`)) has 1 as an eigenvalue if and only if g the
eigenvalues of g are third roots of unity.

Let G1 ⊂ SL2(F`) be the subgroup satisfying Sym3(G1) = G1, and let N be the number of elements of G1

of order 3.
Suppose G were an obstruction, so that N ≥ #G1/2. If G1 is Cartan, then N |3 and #G1|6. When

#G1 = 6, a generator of G1 does not have 1 as an eigenvalue, hence is in kerψ (so ψ is trivial), contradicting
the assumption that G be an obstruction. On the other hand, if #G1 = 3, then every element of G1 has 1
as an eigenvalue, which contradicts Lemma 4(a).

If G1 is a Borel subgroup of SL2(F`), then its eigenvalues are the same as those of its Cartan subgroup.
There are at most 3` elements of G having eigenvalues which are 3rd roots of unity, which gives us #G1|6`.
Just as in the Cartan case, we do not get an obstruction.

If G1 normalizes a Cartan subgroup of SL2(F`), then any element of order 3 necessarily lies in the Cartan
subgroup. Therefore G1 has at most three elements of order 3, forcing #G1|6. The normalizer of a Cartan
subgroup of SL2(F`) contains the element

(
0 −1
1 0

)
, which has order 4 and does not have 1 as an eigenvalue.

This contradicts #G1|6, hence G1 cannot simultaneously normalize a Cartan subgroup of SL2(F`) and satisfy
the fixed-point condition.

Finally suppose G1 is an exotic subgroup of SL2(F`). The groups 2.A4 and 2.S4 each have 8 elements of
order 3, while 2.A5 has 20 elements of order 3. None of these groups satisfy N ≥ #G1/2, hence cannot be
obstructions. This finishes the proof of the proposition. �

6. Subgroups of SL2(F`) o S3

Recall from Section 1.3 that the maximal subgroup SL2(F`)oS3 of Sp6(F`) stabilizes the decomposition of a
six-dimensional symplectic space into a sum of hyperbolic planes. The subgroup SL2(F`)×SL2(F`)×SL2(F`)
(henceforth denoted SL2(F`)3) embeds in Sp6(F`) as block-diagonal matrices. The natural S3-action on the
SL2-factors defines a splitting of the exact sequence

1 // SL2(F`)3 // SL2(F`) o S3
π // S3

// 1.

For the rest of this section let G ⊂ SL2(F`) o S3 be an obstruction and set G0 := G ∩ kerπ. Since G0 is
a subgroup of a triple direct product it can be described by two applications of Goursat’s lemma: write
G0 = (A1 •A2) •A3, relative to the Goursat-tuples

(A1 •A2, A3, B3, ψ) and (A1, A2, B2, φ).

Since G satisfies the fixed-point condition, so does G0, whence G0 is either an obstruction itself, or contains
a copy of the trivial representation in its semisimplification. The following lemma applies to the latter case.

Lemma 11. Let G0 ⊂ SL2(F`)3 have a copy of the trivial representation in its semisimplification. Then
one of the Ai is either trivial, or has order `.
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Proof. By assumption there exists a basis for F6
` such that one of the Ai is of the form ( 1 ∗

0 1 ), since we can
change basis using block-diagonal matrices. �

We divide this section into four parts, based on the image of G/G0 in S3, and begin with the case G = G0.

6.1. Case 1: G ⊂ SL2(F`)3. We assume G = G0 and employ all the notation above, so that G = (A1 •A2)•
A3.

Lemma 12. If G = G0 ⊂ SL2(F`)3 is an obstruction, then G ' Z/2× Z/2.

Proof. Observe that G is necessarily a Goursat-subgroup of SL2(F`)3: otherwise each Ai ⊂ SL2(F`) would
consist entirely of elements with eigenvalues 1; by [12, p. I-2, ex. 1] such a group is not an obstruction.
Therefore, write G = (A1 •A2) •A3. Set #A1 = n, #B2 = m, and [A3 : B3] = k. By inequality (1) we have

nm

k
≥ nm−# kerφ−m+ 1 + 1,

and since # kerφ ≤ n, Lemma 3 assures us that n = m = k = 2 and G ' Z/2× Z/2, as desired. �

Remark. The reason this is the “only” obstruction G is because we are tacitly assuming the remark
following the proof of Lemma 1. More generally, we could take each Ai to be the Borel subgroup Z/2 n Z/`
and define ψ in the same way.

6.2. Case 2: G ⊂ SL2(F`) oZ/3. Here we assume G/G0 ' Z/3, and since G is an obstruction, we know G0

satisfies the fixed-point assumption. Therefore G0 is either an obstruction or, by Lemma 11, at least one of
the Ai is either trivial or has order `.

Lemma 13. Suppose G0 is an obstruction, so G0 ' Z/2× Z/2. Then G ' A4.

Proof. We have an exact sequence

0 −→ Z/2× Z/2 −→ G −→ Z/3 −→ 0

with G non-abelian (it contains elements of the form
(

0 a 0
0 0 b
c 0 0

)
, a, b, c ∈ SL2(F`)). Hence G ' A4 and embeds

in Sp6(F`) via two copies of the standard irreducible 3-dimensional representation of A4. �

If G0 is not an obstruction, then by Lemma 11 we may assume without loss of generality that there exists
a basis so that A3 = 〈( 1 ∗

0 1 )〉. Let #G0 = N and write

G =

{(
a1j

0 0

0 a2j
0

0 0 a3j

)
,

(
0 b1j

0

0 0 b2j

b3j
0 0

)
,

(
0 0 c1j

c2j
0 0

0 c3j
0

)}
,

where 1 ≤ j ≤ N and a3j
has order dividing ` for all j. We will now describe the G which are not

obstructions.

Proposition 7. Suppose G satisfies the fixed-point condition and that G0 is not an obstruction. Then G is
not an obstruction if and only if G is of the form

G =


 1 ∗ 0 0 0 0

0 1 0 0 0 0
0 0 1 ∗ 0 0
0 0 0 1 0 0
0 0 0 0 1 ∗
0 0 0 0 0 1

 ,


0 0 α ∗ 0 0
0 0 0 α−1 0 0
0 0 0 0 β ∗
0 0 0 0 0 β−1

(αβ)−1 ∗ 0 0 0 0
0 αβ 0 0 0 0

 ,


0 0 0 0 αβ ∗
0 0 0 0 0 (βα)−1

α−1 ∗ 0 0 0 0
0 α 0 0 0 0
0 0 β−1 ∗ 0 0
0 0 0 β 0 0


 , α, β ∈ F×` .

Proof. Sufficiency is immediate since G fixes v = (β, 0, α−1β, 0, α−1, 0). Conversely, if G has a copy of the
trivial representation in its semisimplification, then so does G0. Without loss of generality we may assume
A3 has order dividing `, by Lemma 11. Since G0 satisfies the fixed-point condition, its eigenvectors are of
the form v = (x, 0, y, 0, z, 0), where z ∈ F×` , and x, y ∈ F` are non-zero if and only if A2 and A3 have order
dividing `, respectively. However, if either x or y is zero, then no element of G \ G0 can fix v. We can
therefore assume that each Ai has order dividing `, which forces G to be of the form above. �
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It follows that any G ⊂ SL2(F`) o Z/3 which satisfies the fixed-point condition and is not of this form is
an obstruction. For example, the group G ' SL2(F`) o Z/3 defined by

G ∩ kerπ =
{(

A 0 0
0 A−1 0
0 0 I

)}
,

where A ∈ SL2(F`), together with the standard Z/3-action on the diagonal factors, is not of the form in
Proposition 7, yet it satisfies the fixed-point condition.

6.3. Case 3: G ⊂ SL2(F`) oS3. Next, suppose G/G0 ' S3, and that G is an obstruction. It follows that G0

is either an obstruction, or contains a copy of the trivial representation in its semisimplification.

Lemma 14. If G0 is an obstruction, then G is an obstruction if and only if G ' S4.

Proof. By Lemma 12 G0 ' Z/2 × Z/2, hence G is a non-abelian group of order 24 with G/G0 ' S3. The
explicit embedding of G in Sp6(F`) makes it straightforward to show that G satisfies the fixed-point condition
(and is therefore an obstruction) if and only if G ' S4. �

Next we consider the case where the semisimplification of G0 contains the trivial representation. In the
following proposition we give necessary and sufficient conditions for G not to be an obstruction. Hence, any
G which is not of that form and satisfies the fixed-point condition is necessarily an obstruction; an example
of such G follows the proof of the proposition.

Lemma 15. Suppose G0 contains a copy of the trivial representation in its semisimplification, so is not an
obstruction. Then G is not an obstruction if and only if G is of the form

G =

{(
a1j

0 0

0 a2j
0

0 0 a3j

)
,

(
0 b1j

0

0 0 b2j

b3j
0 0

)
,

(
0 0 c1j

c2j
0 0

0 c3j
0

)
,

(
e1j

0 0

0 0 e2j

0 e3j
0

)
,

(
0 0 f1j

0 f2j
0

f3j
0 0

)
,

(
0 g1j

0

g2j
0 0

0 0 g3j

)}
,

where aij = e1j
= f2j

= g3j
= ( 1 ∗

0 1 ) for all i, j, and∏
i

bij =
∏
i

cij =
∏
i

eij =
∏
i

fij =
∏
i

gij = ( 1 ∗
0 1 ) .

Proof. The proof is nearly identical to that of Lemma 7, so we omit it. �

An example of an obstruction G where G0 is not a obstruction is the following. Let J generate a Sylow-`
subgroup of SL2(F`) and define:

G =
{(

J 0 0
0 J 0
0 0 J

)
,
(

0 J 0
0 0 J
J 0 0

)
,
(

0 0 J
J 0 0
0 J 0

)
,
(−J 0 0

0 0 −J
0 −J 0

)
,
( 0 0 −J

0 −J 0
−J 0 0

)
,
( 0 −J 0
−J 0 0
0 0 −J

)}
.

6.4. Case 4: G ⊂ SL2(F`) o S2 × SL2(F`). Here we assume G/G0 ' S2 and start with the case where G0 is
an obstruction.

Lemma 16. Suppose G0 ' Z/2× Z/2 and G is an obstruction. Then G ' D4.

Proof. Without loss of generality we may assume the S2-action on G0 interchanges the first and second
components. The fixed-point condition holds for G, which is a non-abelian group of order 8 with a normal
subgroup isomorphic to Z/2× Z/2. Therefore G ' D4 and is an obstruction. �

When G0 is not an obstruction, let #G0 = n and without loss of generality write G0 =
{(

a1i
0 0

0 a2i
0

0 0 a3i

)}
,

where a3i
has order dividing ` for all i. The S2-action can either interchange the first two components, or

it can interchange the third component with the either of the first two. In the former case, G defines a
subgroup of Sp4(F`)× SL2(F`), and we have the following lemma:

Lemma 17. Let G be given by the Goursat-tuple (G1, G2, G3, ψ), with G1 ⊂ SL2(F`) o S2 ⊂ Sp4(F`), and
G3 C G2 ⊂ SL2(F`). Suppose further that #G0

2 = `. Then G is an obstruction if and only if G ' Dn, with
n|(`2 − 1).
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Proof. Choose a basis so that G has the form

G =
{(

a1i
0 0

0 a2i
0

0 0 a3i

)
,

(
0 b1i

0

b2i
0 0

0 0 b3i

)}
,

where a3i
= ( 1 ∗

0 1 ) for each i. If G is an obstruction, then G2 =
{(−1 ∗

0 −1

)}
, so that G2/G3 ' {±I}.

Since none of the b3i
have 1 as an eigenvalue, it must be the case that the elements

(
0 b1i

b2i
0

)
of G1 each

have 1 as an eigenvalue. The characteristic polynomial of
(

0 b1i

b2i
0

)
is

f(x) = x4 − αx2 + 1,

where α is a polynomial in the entries of b1i
and b2i

. We have assumed and f(1) = 0, hence α = 2. Therefore,
the minimal polynomial is x2 − 1, i.e. b1i

= b−1
2i

for all i.
For ease of notation, rewrite G in the following form:

G =
{(

b1b
−1
i 0

0 b−1
1 bi

)
,
(

0 bi

b−1
i 0

)}
, i = 1, . . . , n.

Let G1 be the index-2 subgroup of G1 consisting of all the
(
b1b

−1
i 0

0 b−1
1 bi

)
. Then G0

1 is a subgroup of SL2(F`)×
SL2(F`), hence is given by a Goursat-tuple (H1, H2, H3, ψ). The explicit description of G0

1 shows that H3 is
trivial and #H2 = #H1. The map ψ : H1 −→ H2/H3 defined by ψ(b1b−1

j ) = b−1
1 bj is a homomorphism if

and only if H1 is abelian. Therefore, G1 is isomorphic to a dihedral group Dn with n|(`2− 1), which finishes
the proof. �

It remains to analyze the case where the S2-action interchanges the third component with either of the
first two (recall a3i

is assumed to have order dividing ` for all i). Without loss of generality we assume that
the second and third components are permuted.

Lemma 18. Let G ⊂ SL2(F`)× (SL2(F`) o S2) and G0 ⊂ G be as above so that a3i
has order dividing ` for

all i. Then G cannot be an obstruction.

Proof. Write G =
{(

a1i
0 0

0 a2i
0

0 0 a3i

)
,

(
b1i

0 0

0 0 b2i

0 b3i
0

)}
, so that the product b3ib2i has order dividing ` for all i

and choose a basis so that a3i = ( 1 ∗
0 1 ) for all i. It follows that b2i = ( x ∗

−y ∗ ) and B3i = ( ∗ ∗y x ), for fixed
x, y ∈ F`, not both zero.

Pick any A =

(
a1j0

0 0

0 a2j0
0

0 0 a3j0

)
∈ G0 with a2j0

=
(
α β
γ δ

)
non-trivial. Left multiplication by A and A−1

lead to the equations: (
α β
γ δ

)
( x ∗
−y ∗ ) = ( x ∗

−y ∗ )(
δ −β
−γ α

)
( x ∗
−y ∗ ) = ( x ∗

−y ∗ ) ,

from which it follows that tr a2j0
= 2. Thus a2j

has order dividing ` for all j, hence so does b2j
b3j

. It follows
that there exists z ∈ F×` such that

b2j = ( z ∗
0 z−1 ) and b3j =

(
z−1 ∗

0 z

)
for all j. But this means G fixes the line spanned by (0, 0, z, 0, 1, 0) and cannot be an obstruction. �

7. Subgroups of GL3(F`).2

Define the semisimplification type of a linear group G to be the tuple whose entries are the dimensions of
the irreducible subspaces with respect to the semisimplification of G. Hence, any subgroup of GL3(F`) has
semisimplification type (1, 1, 1), (2, 1) or (3).

If G is any subgroup of GL3(F`).2, then define G0 := G ∩ kerπ ⊂ GL3(F`) relative to the split exact
sequence

1 // GL3(F`) // GL3(F`).2
π // S2

// 1 ,
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so that G0 ↪→ Sp6(F`) in block-diagonal form.
The obstructions G ⊂ GL3(F`).2 fall naturally into two categories: those for which G0 is also an ob-

struction, and those for which it is not. In the first case, those G for which G0 has semisimplification type
(1, 1, 1) or (2, 1) are listed in Lemma 3 and Proposition 2, while those with semisimplification type (3) will
be described shortly. We then solve the group extension problem

1 −→ G0 −→ G −→ S2 −→ 1,

and also describe all obstructions G for which G0 is not an obstruction.

7.1. Irreducible GL3(F`)-Obstructions. Let G0 ⊂ GL3(F`) have semisimplification type (3) so that G0

acts irreducibly on F3
` ; by Clifford’s theorem G0∩SL3(F`) is either irreducible or has semisimplification type

(1, 1, 1); we start by assuming the former. According to [2, p. 170-177] and [9, p. 191], the irreducible proper
subgroups of SL3(F`) (when ` ≥ 7) are

Z × PSL2(F`), 3.32.SL2(F3), Z ×A5, Z × PSL2(F7), and 3.A6,

where Z is the center of SL3(F`) (which has order 3 when ` ≡ 1(3) and is trivial otherwise). For the rest of
this section set H0 := G0 ∩ SL3(F`).

Lemma 19. The subgroup {1} × PSL2(F`) of Z × PSL2(F`) is an obstruction. Moreover, if H0 is a
Goursat-subgroup of Z × PSL2(F`), then H0 is an obstruction if and only if H0 ' A4 or is dihedral.

Proof. The symmetric square representation Sym2 : SL2(F`) −→ SL3(F`) has kernel {±I}, whence the
embedding PSL2(F`) ↪→ SL3(F`). If g ∈ SL2(F`) has eigenvalues λ±1, then Sym2(g) has eigenvalues 1, λ±2.
Since PSL2(F`) is an irreducible subgroup of SL3(F`), it is an obstruction.

Let H0 be an obstruction given by the Goursat-tuple (H1, H2, H3, ψ) with H1 ⊂ PSL2(F`) and H2 ⊂ Z.
Since Z is cyclic of order 3, there are three possibilities: H2 = H3 = Z, H2 = Z and H3 = 1, or H2 = H3 = 1.
The last case implies H0 ' H1, and we have just shown PSL2(F`) is an obstruction.

If H2 = H3 = Z, then H0 ' H1 × Z. Thus H0 contains a non-trivial central element (which does not
have 1 as an eigenvalue) hence cannot be an obstruction. It remains to assume that H2 = Z = 〈z〉 and H3

is trivial.
The subgroups of PSL2(F`) are the projective images of the Borel and Cartan subgroups (and their

normalizers) of SL2(F`) and A4, S4 and A5. The Cartan subgroups of SL2(F`) are cyclic, while a suitable

choice of basis puts a Borel subgroup into the form
{(

λ2 ∗ ∗
0 1 ∗
0 0 λ−2

)}
; neither can be an obstruction. On the

other hand, the projective image of the normalizer of a Cartan subgroup is a dihedral group. The degree-3
representation in question is a direct sum of an irreducible degree-2 representation and a quadratic character,
hence is an obstruction.

Of the groups A4, S4 and A5, only A4 has a Z/3-quotient (necessary, since H3 is trivial). It is easy to
check that in this case H0 is an obstruction isomorphic to A4. �

Lemma 20. If H0 ⊂ Z × PSL2(F7) is an obstruction, then H0 ' S4 or A4.

Proof. Let H0 be given by the Goursat-tuple (H1, H2, H3, ψ), with H1 ⊂ PSL2(F7), and H2 ⊂ Z. There
are three cases: H2 = H3 = 1, H2 = H3 = Z, or H2 = Z and H3 = 1.

If H2 is trivial, then H0 is a subgroup of PSL2(F7). According to Appendix A, the degree-3 character of
PSL2(F7) does not afford 1 as an eigenvalue on either of the conjugacy classes 7A or 7B, hence H0 ⊂ S4.
This representation of S4 is irreducible and every element has 1 as an eigenvalue (Appendix A).

If H2 = H3 = Z, then H0 ' H1×Z and thus Z ⊂ H0. Since H0 does not satisfy the fixed-point condition,
it cannot be an obstruction. Finally, suppose that H2 = Z and H3 is trivial. If g ∈ PSL2(F7) has order
7, then it is impossible for ψ(g) to have 1 as an eigenvalue (ψ(g) = g, gz, or gz2, where Z = 〈z〉), hence
H1 ⊂ S4. By assumption, H1 has a Z/3-quotient, hence is isomorphic to A4 (otherwise H0 is cyclic). Any
surjective homomorphism ψ : A4 −→ Z gives rise to an obstruction H0 isomorphic to A4. �

Lemma 21. If H0 ⊂ Z ×A5 is an obstruction, then H0 ' A5 or A4.
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Proof. As in the previous two lemmas, any H0 ⊂ Z ×A5 gives rise to a Goursat-tuple (H1, H2, H3, ψ) with
the only possibilities being H2 = H3 = 1 and H2 = H2/H3 = Z. If H2 is trivial, then H0 ' H1 ⊂ A5. This
representation of A5 is irreducible and every element has 1 as an eigenvalue (Appendix A), hence A5 is an
obstruction.

If H2 = Z and H3 = 1, then H1 is a subgroup of A5 with a Z/3-quotient, hence is a subgroup of A4. As
in Lemma 20, any surjective homomorphism ψ : A4 −→ Z gives rise to an obstruction H0 ' A4. �

Next, recall from Section 3 that 3.32.SL2(F3) is the normalizer of the extra-special 3-group 3.32 (so that
SL2(F3) acts faithfully on 32 by conjugation). This group is maximal in SL3(F`) if and only if ` ≡ 1(9);
otherwise 3.32.Q8 is maximal.

Lemma 22. Suppose H0 ⊂ 3.32.SL2(F3). Then H0 cannot be an obstruction.

Proof. According to [10, p. 149], 3.32 has presentation

3.32 = 〈x, y, z|x3 = y3 = z3 = [x, z] = [y, z] = z−1[x, y] = 1〉

(so z generates the center of 3.32), and there are exactly two inequivalent, absolutely irreducible, three-
dimensional representations of 3.32, corresponding to the choices of a primitive 3rd root of unity [10,
prop. 4.6.3]. Choosing a basis and a primitive 3rd root of unity ω we get a representation

x =
(

1 0 0
0 ω 0
0 0 ω2

)
and y =

(
0 1 0
0 0 1
1 0 0

)
,

and one checks that x and y generate all of 3.32. Furthermore, SL2(F3) is generated by

A =
(
ε 0 0
0 ε 0
0 0 ε−2

)
and B = (1− ω)−1

(
1 1 1
1 ω ω2

1 ω2 ω

)
,

where ε is a cube root of ω (so that ` ≡ 1(9)). Neither A nor B have 1 as an eigenvalue, hence any subgroup
H0 of 3.32.SL2(F3) satisfying the fixed-point condition is a subgroup of of 3.32 which intersects the center
trivially. Thus, H0 is cyclic of order 3 and cannot be an obstruction. �

The last maximal irreducible subgroup of SL3(F`) we have yet to analyze is 3.A6.

Lemma 23. Let H0 ⊂ 3.A6 be an obstruction. Then H0 is isomorphic to one of A5, S4, or A4.

Proof. Since 3.A6 contains the center of SL3(F`), H0 is a proper subgroup of 3.A6, and is therefore a
subgroup of one of 3.32.4, Z × A5, or Z × S4 ([4, p. 4]); Lemma 22 rules out 3.32.4. According to Lemmas
20 and 21, H0 is an obstruction if and only if H0 ' A5, S4, or A4. �

Together with the maximal subgroup structure of SL3(F`) (cf. the beginning of this section), Lemmas
19-23 classify the maximal irreducible obstructions H0 in SL3(F`). We now consider the extension problem

1 −→ H0 −→ G0 −→ C −→ 1,(4)

for any cyclic group C ⊂ F×` . If #C is even, then we define C̃ to be the unique quotient of C of order #C/2.

Lemma 24. The solutions to the extension problem above are given in the following table.
H0 G0

A4 A4 × C
S4 × C̃ (if #C is even)

S4 S4 × C
A5 A5 × C

S5 × C̃ (if #C is even)
PSL2(F`) SL2(F`)× C

SO3(F`)× C̃ (if #C is even)
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Proof. In each case H0 has trivial center, so by [1, thm. 4.8] the G0 containing H0 are in one-to-one
correspondence with homomorphisms φ : C −→ Out(H0). Except for S4 (whose outer automorphism group
is trivial) we have Out(H0) ' Z/2.

When H0 ' S4, there is only one homomorphism φ : C −→ Out(S4), hence G0 ' S4 × C. For the other
cases, any cyclic group C admits at most two homomorphisms φ : C −→ Out(H0) ' Z/2. Therefore, the
trivial extensions H0×C occur, along with the non-trivial extensions H0.2× C̃, where H0.2 is a non-trivial
extension of H0 by Z/2; there are isomorphisms A4.2 ' S4, A5.2 ' S5, and PSL2(F`).2 ' SO3(F`) [10,
prop. 2.9.1(ii)]. �

Proposition 8. Let H0 ⊂ SL3(F`) be isomorphic to one of A4, S4, or PSL2(F`). The irreducible GL3-
obstructions G0 containing H0 are S4, A5, and SO3(F`).

Proof. By Lemma 24, G0 is isomorphic to either H0 × C or H0.2× C̃, where C and C̃ are cyclic groups of
order dividing `− 1, and H0.2 is a nontrivial extension of H0.

We have seen that the degree-3 representations of A4, S4, and A5 yield obstructions. However, S5 has
no irreducible, degree-3, F`-representations when ` ≥ 7, so we omit it from this analysis. The standard
F`-representation of SO3(F`) is irreducible, and by Lemma 31 SO3(F`) satisfies the fixed-point condition,
hence is an obstruction. It remains to show that S4, A5, and SO3(F`) are maximal GL3-obstructions. By
Lemma 24, G0 is isomorphic to one of S4 ×C, A5 ×C, or SO3(F`)× C̃; we will show C (resp. C̃) is trivial.

Let c generate C (or C̃). Since G0 is a direct product, S4 (resp. A5, resp. SO3(F`)) commutes with c.
The degree-3 representation of S4 (resp. A5, resp. SO3(F`)) is absolutely irreducible, so c must be scalar.
Since G0 satisfies the fixed-point condition, c, and hence C (resp. C̃), must be trivial. �

In order to classify all irreducible GL3-obstructions G0, we need to revisit the case where H0 is completely
reducible and G0/H0 acts transitively on the irreducible factors, in accordance with Clifford’s theorem. We
can assume H0 is diagonal and G0/H0 ' Z/3 or S3. Since G0 satisfies the fixed-point condition, so does
H0.

Lemma 25. Let H0 be a diagonal subgroup of SL3(F`). If both H0 and G0 are obstructions, then H0 '
Z/2× Z/2 and G0 ' A4 or S4.

Proof. If H0 is an obstruction, then H0 ' Z/2×Z/2 by Lemma 3. When G0/H0 ' Z/3 then G0 ' A4 and
when G0/H0 ' S3, then G0 ' S4. Both groups are obstructions. �

Lemma 26. Let H0 be a diagonal subgroup of SL3(F`) and assume that both H0 and G0 satisfy the fixed-
point condition. If H0 is not an obstruction, then neither is G0.

Proof. Choose a basis so that

H0 =
{(

ai

a−1
i

1

)}
, 1 ≤ i ≤ n.

Since G0 acts transitively on the diagonal factors of H0 and every element of G0 is assumed to have 1 as an
eigenvalue, it is easy to show that n = 1. Hence G0 ' Z/3 or S3. Neither group has an irreducible degree-3
representation, contradicting the assumption that G0 be irreducible. �

7.2. From G0 to G, Case I. In this subsection we continue to assume that G0 is an obstruction, and prove
the following.

Proposition 9. If G0 ⊂ GL3(F`) is an obstruction, then G is an obstruction.

Proof. Any subgroupG of GL3(F`).2 can be written as a collection of 3×3 block matrices
{(

Ai

A∗i

)
,
(

Bi

−B∗i

)}
,

where 1 ≤ i ≤ n = #G0. By assumption,(
Bj

−B∗j

)2

=
(
−BjB

∗
j

−B∗jBj

)
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has 1 as an eigenvalue for all j, which is true if and only if −BjB∗j has 1 as an eigenvalue for all j. Write

fj(x) for the characteristic polynomial of −BjB∗j and gj(x) for the characteristic polynomial of
(

Bj

−B∗j

)
(so gj(1) = 0 for all j). One checks that gj(x) = fj(x2), therefore fj(1) = 0 for all j. Moreover, since the
semisimplification of G0 does not contain the trivial representation, neither does that of G, hence G is an
obstruction. �

7.3. From G0 to G, Case II. It remains to describe the groups G ⊂ GL3(F`).2 for which the semisimpli-
fication of G0 contains the trivial representation. We will show that any such G is an obstruction. We give
details in the special case where G0 has the form:

 1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

1 0 0
∗ ∗ ∗
∗ ∗ ∗


and the non-trivial coset of G/G0 consists of matrices

(
0 Ci

−C∗i 0

)
, Ci ∈ GL3(F`).

First, any such G satisfies the fixed-point condition. If G were not an obstruction, then it would have to
fix a line of the form (α, 0, 0, β, 0, 0), α, β ∈ F×` . In terms of the non-trivial coset of G/G0, this means each

Ci and C∗i must have the form
(
α/β ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
and

(
β/α ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
, respectively. However, this implies (since C∗i is the

dual of Ci) that α/β = −α/β, which contradicts the invertibility of the Ci.

8. The Field Extension Subgroups: SL2(F`3).3 and GU3(F`2).2

Let G denote either SL2(F`3).3 or GU3(F`2), G0 the subgroup of G isomorphic to SL2(F`3) or GU3(F`2),
and m = 3 or 2, respectively. Define π relative to the split exact sequence

1 // G0 // G π // Z/m // 1.

Lemma 27. Suppose G ⊂ G is such that G ∩ kerπ contains a copy of the trivial representation in its
semisimplification. Then G contains a copy of the trivial representation in its semisimplification.

Proof. By assumption, there exists a basis for F6/m
`m for which for which G ∩ kerπ ⊂ G0 is in block upper-

triangular form, with one of the blocks being trivial. The vector space isomorphism F6/m
`m ' F6

` preserves the
block-upper triangular form of G ∩ kerπ, hence its semisimplification (as a subgroup of Sp6(F`)) contains
the trivial representation. By [10, (2.1.2)], the simple factors in Sp6(F`) are preserved by the action of
Gal(F`m/F`). Since 1 is fixed by Gal(F`m/F`), it follows that G contains a copy of the trivial representation
in its semisimplification. �

Lemma 28. Suppose every element of G ⊂ SL2(F`3).3 has 1 as an eigenvalue. Then the semisimplification
of G contains the trivial representation.

Proof. Set G0 = G ∩ kerπ. By [12, p. I-2, ex. 1], there exists a basis for F2
`3 such that G0 = ( 1 ∗

0 1 ), i.e. G
fixes a line L in F2

`3 . Under the isomorphism φ : F`3 −→ F3
` the line φ(L) is fixed by all of G0, hence G0 is

not an obstruction, and by Lemma 27, neither is G. �

It remains to describe the obstructions G ⊂ GU3(F`2).2. The geometric subgroups of GU3(F`2) are:

GU2(F`2)× F×`2 [10, (4.1.4)], F×`6 .3, [10, (4.3.11)], F×`2 o S3, [10, (4.2.9)], and O3(F`2) [10, (4.5.5)],

while the exceptional subgroups of SU3(F`2) are

Z/3× PSL2(F7), 3.A6, and 3.32.SL2(F3) [9, p. 200].

We begin by describing the obstructions for which G = G0 := G ∩ kerπ ⊂ GU3(F`2).

Lemma 29. If G0 ⊂ GU3(F`2) is an obstruction, then G0 is isomorphic to one of Z/2× Z/2, S3, D4, A4,
S4, 2.S4, Dn, SO3(F`), or is an irreducible subgroup of SO3(F`2).
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Proof. Any obstruction G0 is a proper subgroup of GU3(F`2), hence is contained in a maximal subgroup. If
G0 ⊂ GU2(F`2)× F×`2 , then Proposition 2 is easily adapted to this case to give G0 ' Z/2× Z/2, D4, 2.S4,
or Dn.

When G0 ⊂ F×`2 o S3, set H0 := ker$ ∩G0 relative to the split exact sequence:

1 // (F×`2)3 // F×`2 o S3
$ //// S3

// 1.

If H0 is an obstruction, then Lemma 3 shows H0 ' Z/2× Z/2. Therefore, by Lemma 25 G0 is isomorphic
to either Z/2 × Z/2, A4, or S4. If H0 is not an obstruction, then one of the F×`2-factors is trivial; choose a
basis so that

H0 =
{( ai

bi
1

)}
, i = 1, . . . , n.

Using the fact that G0/H0 ↪→ S3 it is easy to show that n = 1 and G0 ' S3 (direct sum of the sign
representation and the standard degree-2 representation).

It is not possible for G0 ⊂ F×`6 .3 (G0∩F×`6 is a cyclic group which satisfies the fixed-point condition, hence
it fixes a line in F6

` - apply Lemma 27).
Finally, suppose G0 ⊂ O3(F`2). The maximal subgroups of O3(F`2) are

O1(F`2)×O±2 (F`2) [10, (4.1.5)]
O1(F`2) o S3 [10, (4.2.15)]
O1(F`6).3 [10, (4.3.17)]
O3(F`) [10, prop. 4.5.8],

where O1(F`2) = O1(F`6) = {±1}. Each of O1(F`2)×O±2 (F`2), O1(F`2) o S3, and O1(F`6).3 are subgroups
of F×`2 × GU2(F`2), F×`2 o S3, and F×`6 .3 respectively, and have therefore already been analyzed. We are left
with the case where G0 is an irreducible subgroup of O3(F`2).

By Clifford’s theorem, H0 : G0 ∩ SO3(F`2) is irreducible. Every H0 is an obstruction because SO3(F`2)
is (Lemma 31). Now apply the results of Lemma 24 to the exact sequence

1 −→ H0 −→ G0 −→ 〈−I〉 −→ 1.

It follows that if G0 is an irreducible obstruction, then G0 = H0. �

It remains to solve the extension problem

1 −→ G0 −→ G −→ Gal(F`2/F`) −→ 1

for obstructions G0 ⊂ GU3(F`2).

Lemma 30. Suppose G0 ⊂ GU3(F`2) is any obstruction on which Gal(F`2/F`) acts non-trivially. Then G
is an obstruction.

Proof. Let g ∈ G0 and suppose gv = v. Then gσv = v, for any σ ∈ Gal(F`2/F`), by [10, (2.1.2)]. The
semisimplification of G0 does not contain the trivial representation, hence neither does G. Therefore G is
an obstruction. �

9. Subgroups of O3(F`)⊗ SL2(F`)

Let A and B be finite groups equipped with finite dimensional representations ρ1 : A −→ GL(V ) and
ρ2 : B −→ GL(W ). Denote by A⊗B the image of ρ1⊗ρ2 and observe that if {λ1, . . . , λm} and {µ1, . . . , µm}
are the eigenvalues of ρ1(a) and ρ2(b) respectively, then {λ1µ1, . . . , λnµm} are the eigenvalues of ρ1(a)⊗ρ2(b).

The orthogonal subgroup O3(F`) of GL3(F`) is defined as the isometry group of a non-degenerate quadratic
form q; there exists a basis of F3

` with respect to which q has the form
(

0 1 0
1 0 0
0 0 1

)
[10, prop. 2.5.3]. It is well

known that det : O3(F`) −→ {±1} is surjective, and we define ker det := SO3(F`). According to [6, cor. 6.10],
SO3(F`) satisfies the fixed-point condition:

Lemma 31. [6, cor. 6.10] Every element of SO3(F`) has 1 as an eigenvalue.
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By forming the tensor product of the standard representations of O3(F`) and SL2(F`) we obtain the
maximal subgroup O3(F`) ⊗ SL2(F`) of Sp6(F`) [10, (4.4.14)]. If G is a subgroup of O3(F`) × SL2(F`),
denote by G the associated subgroup of O3(F`)⊗ SL2(F`).

Proposition 10. Let G ⊂ O3(F`) × SL2(F`) be a direct product subgroup given by the Goursat-tuple
(G1, G2, G2, ψ). Then G is an obstruction if and only if G1 ⊂ O3(F`) is an obstruction and G2 ⊂ SL2(F`)
is trivial or has order `.

Proof. Since G is a direct product, it follows that both G1 and G2 consist entirely of eigenvalue-1 elements,
hence G2 is trivial or has order `. Thus G is an obstruction if and only if G1 ⊂ O3(F`) is an obstruction. �

For the remainder of this section G will be a Goursat-subgroup of O3(F`)× SL2(F`) with Goursat-tuple
(G1, G2, G3, ψ) and associated subgroup G ⊂ O3(F`)⊗ SL2(F`).

Lemma 32. Let G ⊂ O3(F`)⊗ SL2(F`) be an obstruction. Then G3 is either trivial or has order `.

Proof. Since {I} ×G3 is a subgroup of G, each element of G3 must have 1 as an eigenvalue. �

The maximal subgroups of O3(F`) are
O1(F`3).3 [10, (4.3.17)]
O±2 (F`)×O1(F`) [10, (4.1.5)]
O1(F`) o S3 [10, (4.2.15)],

where O1(F`) = O1(F`3) = {±1}, and O±2 (F`) ' D`∓1, the dihedral group of order 2(`∓1) [10, prop. 2.9.1].

Lemma 33. If G1 = O1(F`3).3, then G is not an obstruction, and if G1 = O3(F`), then we get an obstruction
G ' SO3(F`) by setting G2/G3 = {±I} and kerψ = SO3(F`).

Proof. If G1 ' O1(F`3).3, then G1 is cyclic, hence G is cyclic and therefore cannot be an obstruction.
If G1 ' O3(F`), then ψ : O3(F`) −→ {±I} defines a Goursat-subgroup G of O3(F`) × SL2(F`). The
isomorphism G ' SO3(F`) follows since O3(F`) = SO3(F`)× 〈−I〉 [10, (2.6.1)]. �

We divide the rest of this section into two cases based on the maximal subgroups O±2 (F`)×O1(F`) and
O1(F`) o S3 of O3(F`) respectively.

9.1. Case 1: G1 ⊂ O±2 (F`) × O1(F`). Until further notice set G1 ⊂ O±2 (F`) × O1(F`) with Goursat-
tuple (H1, H2, H3, φ), where H1 ⊂ O±2 (F`), H2 ⊂ O1(F`) ' {±1}, and φ : H1 −→ H2/H3 is a surjective
homomorphism. By [10, p. 44] there is an isomorphism D`∓1 −→ O±2 (F`) defined by r 7→

(
λ 0
0 λ−1

)
, and

s 7→ ( 0 1
1 0 ). However, the following lemma (whose proof is omitted) shows that it is not possible for G2 to be

dihedral.

Lemma 34. Let k be any field of characteristic 6= 2. Then SL2(k) does not contain a dihedral group.

There are three possibilities for H2 and H3, namely H2 = H3 = 1, H2 = H3 = {±1}, or H2 = {±1} and
H3 = 1. We treat these cases separately in the following lemmas.

Lemma 35. Suppose G1 is given by the Goursat-tuple (H1, H2, H3, φ) with H2 = H3 = 1. Then G is an
obstruction if and only if G1 = H1 is dihedral, G2/G3 = {±I}, and ψ : G1 −→ G2/G3 is the natural
homomorphism.

Proof. If H2 = H3 = 1, then G1 ' H1. We have H1 ⊂ O±2 (F`) ' D`∓1, whence H1 is either cyclic or
dihedral.

If H1 is cyclic, then G2/G3 is cyclic. Therefore, G2 is either cyclic (when G3 = I) or Borel (when G3 has
order `). Let g be a generator for G1 and set ψ(g) = hG3. The fixed-point condition holds for G if and only
if every element of g ⊗ hG3 has 1 as an eigenvalue, which is true if and only if g ⊗ h has 1 as an eigenvalue,
by Lemma 32; it follows that the semisimplification of G contains the trivial representation.

If H1 is dihedral, then G2/G3 ' {±I} by Lemma 34. It follows that G is an obstruction. �

Proposition 11. If H2 = H3 = {±1} (so G1 ' H1×H2), or if H2 = {±1} and H3 is trivial, then G cannot
be an obstruction.

22



Proof. The group H1 is either dihedral or cyclic; denote by 〈h1〉 its cyclic subgroup of index 2 or 1, respec-
tively. First assume H2 = H3 = {±1}. If G satisfies the fixed-point condition, then ψ(h1,−1) is non-trivial.
Moreover, in order that the group structures on G1 and G2/G3 be compatible with that on G, it follows that
kerψ = H1. This forces G to fix a line in F6

` , and therefore fail to be an obstruction.
Next suppose H1 is cyclic and H3 is trivial so that G1 is a cyclic group of even order. It follows that G2/G3

is cyclic and hence that G fixes a line. We are left with the case where H1 is dihedral and [H1 : kerφ] = 2,
so that G1 is dihedral. By Lemma 34, G2/G3 has order 2. The natural homomorphism ψ : G1 −→ G2/G3

defines a group G which fixes a line in F6
` . This proves the proposition. �

9.2. Case 2: G1 ⊂ O1(F`)oS3. The maximal subgroup O1(F`)oS3 of O3(F`) is obtained through the natural
S3-action on

O1(F`)3 '
( ε1 0 0

0 ε2 0
0 0 ε3

)
, (εi ∈ {±1}),

where O1(F`) o S3 is isomorphic to the trivial central extension 〈−I〉 × S4 of (a degree-3 representation of)
S4.

Lemma 36. Suppose G ⊂ (O1(F`) oS3)×SL2(F`) gives rise to an obstruction G ⊂ O3(F`)⊗SL2(F`). Then
(a) kerψ consists entirely of elements having 1 as an eigenvalue,
(b) G2/G3 does not contain a subgroup isomorphic to Z/2× Z/2 or S3.

Proof. Part (a) follows from Lemma 35 and part (b) from Lemma 34. �

Our strategy to find all obstructions with G1 ⊂ O1(F`)oS3 is as follows. For each divisor d of 48, enumerate
the subgroups G1 of O1(F`) o S3 of order d, then construct all possible homomorphisms ψ : G1 −→ G2/G3.
The computations are elementary but tedious, so we only provide the results. In the following table we list,
for each d|48, the subgroups G1 of O1(F`) oS3 of order d, the normal subgroups K of G1, and whether or not
the group G (defined by kerφ = K) is an obstruction. If G fails to be an obstruction, it is usually because
Lemma 36 is violated. If G1 is cyclic, then so is G and therefore it cannot be an obstruction.

d G1 K Obstruction?

48 O1(F`) o S3 O1(F`) o S3, A4 × {±I}, O1(F`)
3, A4, #K = 1, 2, or 4 No, Lemma 36

S4 Yes

24 A4 × {±I} A4 × {±I}, O1(F`)
3, 〈−I〉, 〈I〉 No, Lemma 36

A4 Yes
Z/2× Z/2 Yes

S4 Z/2× Z/2, 〈I〉 No Lemma 36
A4 Yes

16 D4 × Z/2 D4 × Z/2, Z/2× Z/2× Z/2, Z/4× Z/2, #K = 1, 2 or 4 No, Lemma 36
D4 Yes

12 D6 D6, Z/6, Z/3, 〈−I〉, {I} No, Lemma 36
S3 Yes

A4 A4, {I} No, Lemma 36
Z/2× Z/2 Yes

8 Z/4× Z/2 Z/4× Z/2, Z/4, Z/2× Z/2 No, Lemma 36
Z/4 No, G is cyclic

Z/2× Z/2× Z/2 Z/2× Z/2× Z/2, Z/2, {I} No, Lemma 36
Z/2× Z/2 Yes

D4 Z/4, #K = 1, 2 or 8 No, Lemma 36
Z/2× Z/2 Yes

6 S3 {I} No, Lemma 36
Z/3, S3 Yes

4 Z/2× Z/2 {I} No, Lemma 36
Z/2× Z/2, Z/2 Yes

To recap, we have:

Proposition 12. Let G1 ⊂ O1(F`) o S3. Then G is an obstruction if and only if one of the following hold.
G1 G2/G3 G

O1(F`) o S3 {±I} S4
A4 × Z/2 Z/6 A4 × Z/2
A4 × Z/2 {±I} A4

S4 {±I} S4
D4 × Z/2 {±I} D4

D6 {±I} S3
A4 Z/3 A4

Z/2× Z/2× Z/2 {±I} Z/2× Z/2
D4 {±I} Z/2× Z/2
S3 {±I} S3

Z/2× Z/2 Z/2 Z/2× Z/2
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10. Exotic Subgroups

Let q be a power of ` and let π : Sp6(F`) −→ PSp6(F`) be the natural projection. There are nine maximal
subgroups (up to conjugation) of PSp6(Fq) that do not arise as stabilizers of vector space decompositions of
F6
q [9, p. 210]. We call these exotic subgroups (Type S in [9]) and list them in the following table:

Group Conditions
PSL2(Fq) q ≥ 7
G2(Fq) q even
S5 q = ` ≡ ±1(8)
A5 q = ` ≡ ±3(8)
PSL2(F7).a ` /∈ {2, 3, 7}, Fq = F`(

√
2)

a = 2 if q ≡ ±1(16)
a = 1 if q ≡ ±3,±5,±7(16)

PSL2(F13) ` /∈ {2, 13}, Fq = F`(
√

13)
A7 q = 9
PSU3(F9) q = ` ≡ ±1(12)
J2 q odd, Fq = F`(

√
5)

Now set q = ` ≥ 7 and suppose im(π ◦ ρ`) = G is an exotic subgroup of PSp6(F`) (so we disregard G2(q)
and A7). Since 2.G ⊂ Sp6(F`) is irreducible, it 2.G is an obstruction if and only if it satisfies the fixed-point
condition. We will use the (ordinary) character table of 2.G to determine the characteristic polynomials (and
therefore the eigenvalues) of its conjugacy classes; see Appendix A for lists of the characteristic polynomials.

10.1. Case 1: G ⊂ PSL2(F`). Let G = PSL2(F`) so that Sym5(2.G) ' SL2(F`) defines an irreducible
subgroup of Sp6(F`) [9, p. 201]. We will show that no subgroup of Sym5(2.G) is an obstruction.

Lemma 37. Let H ⊂ SL2(F`) and suppose Sym5(H) ⊂ Sp6(F`) satisfies the fixed-point condition. Then
the semisimplification of Sym5(H) contains the trivial representation.

Proof. If h ∈ H has eigenvalues λ±1, then Sym5(h) has eigenvalues λ±1, λ±3, and λ±5. It follows that either
λ = 1 for all h ∈ H, or every element of H which does not have eigenvalues 1 has eigenvalues which are 3rd

or 5th roots of unity. The former case cannot be an obstruction by [12, p. I-2, ex. 1], and in the latter case
H is either Cartan (cyclic) or Borel. Neither can be an obstruction. �

10.2. Case 2: G ⊂ A5 and S5. The degree-6 characters χ0
9 and χ1

9 of 2.S5 do not have determinant 1,
hence do not define subgroups of Sp6(F`). On the other hand, the degree-6 character χ9 of 2.A5 does have
determinant 1.

Lemma 38. Let 2.A5 ⊂ Sp6(F`) be a non-trivial central extension of the exotic subgroup A5 of PSp6(F`)
and let H ⊂ 2.A5 be any subgroup. Then H is not an obstruction.

Proof. The only non-trivial elements of 2.A5 which have 1 as an eigenvalue have orders 3 or 5. Therefore, if
H satisfies the fixed-point condition, then it consists entirely of elements of orders 3 or 5. By the subgroup
structure of 2.A5 this implies H is cyclic, and is therefore not an obstruction. �

10.3. Case 3: G ⊂ PSL2(F7).a or PSL2(F13). Let G be any of the exotic subgroups PSL2(F7).a, or
PSL2(F13) of PSp6(F`). We will show that no subgroup H of 2.G can be an obstruction.

Suppose G is one of PSL2(F13) or PSL2(F7) so that there are only two inequivalent central extensions 2.G
(recall G is perfect). The trivial central extension is not a subgroup of Sp6(F`) since G has no irreducible,
degree-6 representation in characteristic `, hence 2.G ' SL2(F13) or SL2(F7), respectively.

Proposition 13. Let H ⊂ SL2(F13) ⊂ Sp6(F`) be any subgroup. Then H is not an obstruction.

Proof. We identify SL2(F13) with its degree-6 representation and suppose H ⊂ SL2(F13) satisfies the fixed-
point condition. Combining the character data from Appendix A with the subgroup structure of SL2(F13)
[4, p. 8], it follows that H is a subgroup of 2.A4 or 2.D6 which intersects the conjugacy class 1A1 trivially.
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The only non-cyclic proper subgroup of 2.A4 is Q8, but Q8 intersects the class 1A1 non-trivially. Hence,
H is cyclic and therefore cannot be an obstruction. A similar argument shows that no subgroup of 2.D6 can
be an obstruction. �

Proposition 14. Let H ⊂ SL2(F7) ⊂ SL2(F`) be any subgroup. Then H is not an obstruction.

Proof. According to Appendix A, no degree-6 character of SL2(F7) affords 1 as an eigenvalue on the con-
jugacy classes 7A0, 7A1, 7B0, or 7B1. Hence if H satisfies the fixed-point condition, then 7|[SL2(F7) : H]
and H intersects the center of SL2(F7) trivially. Accordingly, π(H) ' H is a subgroup of S4. There are
no non-cyclic subgroups of S4 which can be embedded in SL2(F7) (Lemma 34), hence any H satisfying
the fixed-point condition must be cyclic of order 3 (a cyclic subgroup of order 4 contains the center) and
therefore not an obstruction. �

If G ' PSL2(F7).2, and H ⊂ 2.G is any subgroup, define H0 := H ∩kerφ ⊂ SL2(F7) relative to the short
exact sequence:

1 // SL2(F7) // SL2(F7).2
φ // Z/2 // 1 .

Lemma 39. Let H ⊂ SL2(F7).2 be any subgroup. Then H is not an obstruction.

Proof. Suppose H (and therefore H0) satisfies the fixed-point assumption. By Proposition 14, H0 is cyclic
of order 3. It suffices to assume H ' S3; denote by χ the associated degree-6 character of H. By Maschke’s
theorem, χ is completely reducible, and the following table shows that χ is a direct sum of two copies of
the degree-2 representation, one copy of the sign representation, and one copy of the trivial representation,
which proves the lemma.

Rep. Characteristic Characteristic Characteristic
of S3 Polynomial of 1A0 Polynomial of 3A0 Polynomial of 2B0

χ (x− 1)6 (x− 1)2(x2 + x+ 1)2 (x− 1)3(x+ 1)3

trivial (x− 1) (x− 1) (x− 1)

alternating (x− 1) (x− 1) (x+ 1)

degree-2 (x− 1)2 (x2 + x+ 1) (x2 − 1)

�

10.4. Case 4: G ⊂ PSU3(F9). The preimage of PSU3(F9) in Sp6(F`) is PSU3(F9) [4, p. 14], and any
obstruction G ⊂ PSU3(F9) must be a proper subgroup since (for example) the conjugacy class 3A does not
afford 1 as an eigenvalue. The maximal subgroups of PSU3(F9) are

31+2
+ : 8, PSL2(F7), 42 : S3, and 4 · S4.

None of these groups satisfy the fixed-point condition either, so we investigate the next level of maximal
subgroups. With the aid of Magma, we can write down the maximal subgroup lattice and then check which
groups satisfy the fixed-point condition using the characteristic polynomials in Appendix A. We briefly
sketch the results.

Any (non-cyclic) G ⊂ 31+2
+ : 8 which satisfies the fixed-point condition cannot meet the conjugacy class

3A, nor can it have an element of order 6 or 8. This means G is a non-cyclic proper subgroup of 32 : 2, hence
is a subgroup of S3 or 32. Neither group can be an obstruction.

Next suppose G is a subgroup of PSL2(F7) which satisfies the fixed-point condition. Any such G does not
meet 7A, hence is a subgroup of S4. Using the methods of Lemma 14, it can be shown that the six-dimensional
representations of S4 in question contain the trivial representation in their semisimplifications.

The group 4.S4 has three maximal subgroups, of orders 24, 32, and 48, respectively. The group of order
24 intersects 8A non-trivially,and each of its maximal subgroups is cyclic. Therefore this group of order 24
does not lead to an obstruction. The maximal subgroup of order 32 intersects 8A non-trivially, and it can
be shown any non-cyclic proper subgroup which satisfies the fixed-point assumption necessarily contains a
copy of the trivial representation. Similarly, one can show that no subgroup of 42 : S3 can be an obstruction.
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10.5. Case 5: G ⊂ J2. The largest exotic subgroup of PSp6(F`) is the Hall-Janko group J2; it’s preimage
in Sp6(F`) is a non-trivial double-cover 2.J2. One of the assumptions of Theorem 1 is that imπ ◦ ρ` is not a
proper subgroup J2. One could (in principle) remove this assumption by searching the subgroup lattice of
J2 for obstructions; a recursive approach is outlined here.

Any degree-6 irreducible representation of 2.J2 does not afford 1 as an eigenvalue on conjugacy class 3A,
hence any subgroup G satisfying the fixed-point assumption must be contained in a maximal subgroup of
2.J2. Moreover, such a group G can only contain elements from the conjugacy classes 1A0, 2A0, 2A1, 2B,
3B0, 4A0, 6A1, 8A0, and 12A1. Using the recursive procedure outlined in this paper, one could determine
all subgroups of 2.J2 which satisfy the fixed-point condition. To decide whether or not the given group
is an obstruction, apply Maschke’s theorem and compare the characteristic polynomials of the irreducible
constituents to the given characteristic polynomials; this will determine whether or not the group is an
obstruction.

Appendix A. Characteristic Polynomials

In this appendix we record the characteristic polynomials which are referred to in the main text and
briefly describe how they are obtained.

Let C be a conjugacy class of a finite group G, and let χ be an irreducible character of G. One can extract
the coefficients of the characteristic polynomial of C from the values of χ by expressing the elementary
symmetric polynomials in terms of the power-sum polynomials (or Newton polynomials) [11, p. 15]; the first
six are:

e1 = χ(C), e2 =
χ(C)2 − χ(C2)

2
, e3 =

χ(C)3 − 3χ(C)χ(C2) + 2χ(C3)
6

e4 =
χ(C)4 − 6χ(C2)χ(C)2 + 3χ(C2) + 8χ(C3)χ(C)− 6χ(C4)

24

e5 =
χ(C)5 − 10χ(C2)χ(C)3 + 15χ(C2)2χ(C)− 20χ(C3)χ(C2) + 20χ(C3)χ(C)2

120

+
−30χ(C4)χ(C) + 24χ(C5)

120

e6 =
χ(C)6 − 15χ(C2)χ(C)4 + 45χ(C2)2χ(C)2 − 15χ(C2)3 + 40χ(C3)χ(C)3

720

+
−120χ(C3)χ(C2)χ(C) + 40χ(C3)− 90χ(C4)χ(C)2 + 90χ(C4)χ(C2)

720

+
144χ(C5)χ(C)− 120χ(C6)

720

One of the key assumptions for our classification of obstructions in Sp6(F`) was that ` ≥ 7. This allows
us to avoid modular representations where the characteristic of the field divides the order of the group.
Moreover, the F`-representations that we encounter are the “reductions mod `” of the ordinary C-valued
representations. Since F` is not algebraically closed, there may be congruence conditions imposed on ` in
order that such a representation be F`-rational. For example, 7|#J2, yet J2 is not a subgroup of PSp6(F7)
since 5 is not a square mod 7.

The obstructions G for which ` | #G involve the groups Sym2 SL2(F`), SO3(F`), and SO3(F`2). In
these cases, we only use the fact that the natural Fq-representation of SO3(Fq) and the symmetric power
representations of SL2(F`) are irreducible. To study their subgroups, we appealed to the classification of the
subgroups of the finite linear groups [10].

We now record the characteristic polynomials, using Atlas notation where appropriate.

A4
1 (123) (132) (12)(34)

χ (degree-3) (x− 1)3 (x− 1)(x2 + x + 1) (x− 1)(x2 + x + 1) (x− 1)(x + 1)2

2.A4
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1A0 1A1 2A0 3A0 3A1 3B0 3B1
χ1 (degree 2) (x− 1)2 (x + 1)2 x2 + 1 x2 − x + 1 x2 + x + 1 x2 − x + 1 x2 + x + 1

χ2 (degree 2) (x− 1)2 (x + 1)2 x2 + 1 x2 − z62x + 1 x2 − z6x + 1 x2 − z64x + 1 x2 − z65x + 1

χ3 (degree 2) (x− 1)2 (x + 1)2 x2 + 1 x2 − z64x + 1 x2 − z65x + 1 x2 − z62x + 1 x2 − z6x + 1

S4
1 (12) (123) (1234) (12)(34)

χ1 (degree 2) (x− 1)2 x2 − 1 x2 + x + 1 x2 − 1 x2 − 2x + 1

χ2 (degree 3) (x− 1)3 (x− 1)2(x + 1) (x− 1)(x2 + x + 1) (x + 1)(x2 + 1) (x− 1)(x2 + x + 1)

χ3 (degree 3) (x− 1)3 (x + 1)2(x− 1) (x− 1)(x2 + x + 1) (x− 1)(x2 + 1) (x− 1)(x2 + x + 1)

2.S4
1 2 3 4 5 6 7 8

χ1 (degree 2) (x− 1)2 (x + 1)2 x2 + x + 1 x2 − x + 1 x2 + 1 x2 − r2x + 1 x2 + r2x + 1 x2 + 1

χ2 (degree 2) (x− 1)2 (x + 1)2 x2 + x + 1 x2 − x + 1 x2 + 1 x2 + r2x + 1 x2 − r2x + 1 x2 + 1

2.A5
χ6 χ7 χ9

1A0 (x− 1)2 (x− 1)2 (x− 1)6

1A1 (x + 1)2 (x + 1)2 (x + 1)6

2A0 x2 + 1 x2 + 1 (x2 + 1)3

3A0 x2 + x + 1 x2 + x + 1 (x− 1)2(x2 + x + 1)2

3A1 x2 − x + 1 x2 − x + 1 (x + 1)2(x2 − x + 1)2

5A0 x2 − b5x + 1 x2 − b5∗x + 1 (x− 1)2(x4 + x3 + x2 + x + 1)

5A1 x2 + b5x + 1 x2 + b5∗x + 1 (x + 1)2(x4 − x3 + x2 − x + 1)

5B0 x2 − b5∗x + 1 x2 − b5x + 1 (x− 1)2(x4 + x3 + x2 + x + 1)

5B1 x2 + b5∗x + 1 x2 + b5x + 1 (x + 1)2(x4 − x3 + x2 − x + 1)

S5
χ2,3

1A (x− 1)6

2A (x− 1)2(x + 1)4

3A (x− 1)2(x2 + x + 1)2

5AB (x− 1)2(x4 + x3 + x2 + x + 1)

2B (x− 1)3(x + 1)3

4A (x− 1)(x + 1)(x2 + 1)2

6B (x− 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

2.S5
χ0
9 χ1

9
1A0 (x− 1)6 (x− 1)6

1A1 (x + 1)6 (x + 1)6

2A0 (x2 + x + 1)3 (x2 + 1)3

3A0 (x− 1)2(x2 + x + 1)2 (x− 1)2(x2 + x + 1)2

3A1 x2 − x + 1 (x + 1)2(x2 − x + 1)2

5AB0 (x− 1)2(x4 + x3 + x2 + x + 1) (x− 1)2(x4 + x3 + x2 + x + 1)

5AB1 (x + 1)2(x4 − x3 + x2 − x + 1) (x + 1)2(x4 − x3 + x2 − x + 1)

2B0 (x− 1)3(x + 1)3 (x− 1)3(x + 1)3

4A0 x6 − i2x5 − x4 + x2 − i2x− 1 x6 + i2x5 − x4 + x2 + i2x− 1

4A1 x6 + i
√

2x5 − x4 + x2 + i2x− 1 x6 − i
√

2x5 − x4 + x2 − i2x− 1

6B0 (x− 1)(x + 1)(x2 + x + 1)(x2 − x + 1) (x− 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

6B1 (x− 1)(x + 1)(x2 + x + 1)(x2 − x + 1) (x− 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

2.A6
χ8 χ9

1A0 (x− 1)4 (x− 1)2

1A1 (x + 1)4 (x + 1)2

2A0 (x2 + 1)2 (x2 + 1)2

3A0 (x2 + x + 1)2 (x2 + x + 1)2

3A1 (x2 − x + 1)(x + 1)2 (x2 − x + 1)2

3B0 (x2 + x + 1)2 (x2 + x + 1)2

3B1 (x2 − x + 1)2 (x2 − x + 1)(x + 1)2

4A0 x4 + 1 x4 + 1

4A1 x4 + 1 x4 + 1

5A0 x4 + x3 + x2 + x + 1 x4 + x3 + x2 + x + 1

5A1 x4 − x3 + x2 − x + 1 x4 − x3 + x2 − x + 1

5B0 x4 + x3 + x2 + x + 1 x4 + x3 + x2 + x + 1

5B1 x4 − x3 + x2 − x + 1 x4 − x3 + x2 − x + 1

2.S6
χ0
8 χ1

8 χ0
9 χ1

9
2B0 (x− 1)2(x + 1)2 (x− 1)2(x + 1)2 (x− 1)2(x + 1)2 (x− 1)2(x + 1)2

2C0 (x2 + 1)2 (x2 + 1)2 (x2 + 1)2 (x2 + 1)2

4B0 x4 + 1 x4 + 1 x4 + 1 x4 + 1

6A0 (x2 − x + 1)(x2 + x + 1) (x2 − x + 1)(x2 + x + 1) x4 − i3x3 − 2x2 + i3x + 1 x4 + i3x3 − 2x2 − i3x + 1

6A1 (x2 − x + 1)(x2 + x + 1) (x2 − x + 1)(x2 + x + 1) x4 + i3x3 − 2x2 − i3x + 1 x4 − i3x3 − 2x2 + i3x + 1

6B0 x4 − r3x3 + 2x2 − r3x + 1 x4 + r3x3 + 2x2 + r3x + 1 x4 − x2 + 1 x4 − x2 + 1

6B1 x4 + r3x3 + 2x2 + r3x + 1 x4 − r3x3 + 2x2 − r3x + 1 x4 − x2 + 1 x4 − x2 + 1
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PSL2(F7)
χ2 χ3 χ4

1A (x− 1)3 (x− 1)3 (x− 1)6

2A (x− 1)(x + 1)2 (x− 1)(x + 1)2 (x− 1)4(x + 1)2

3A (x− 1)(x2 + x + 1) (x− 1)(x2 + x + 1) (x− 1)2(x2 + x + 1)2

4A (x− 1)(x2 + 1) (x− 1)(x2 + 1) (x− 1)2(x + 1)2(x2 + 1)

7A x3 − b7x2 + b7∗x− 1 x3 + b7x2 − b7∗x− 1 x6 + x5 + x4 + x3 + x2 + x + 1

7B x3 + b7x2 − b7∗x− 1 x3 − b7x2 + b7∗x− 1 x6 + x5 + x4 + x3 + x2 + x + 1
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