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At the Planck scale, a quantum hehavior of the geometry of space 1s expected. Loop

p/,.@ W aravity provides a spectfic realization of this expectation: It predicts a granularity of
space with each gramn having a quantum behavior. In particular, the volume of a gramn
of space 1s quantized and has a discrete spectrum with a rich structure, |1]

Introduction Pentahedral phase diagram

[ show that chaotic classical dynamics assoctated to the volume of discrete grains of space leads to Remarkably, the o, (3, and ~y parameters completely determine the adjacency of a given set of  area vectors. For
quantal spectra that are gapped between zero and nonzero volume. This strengthens the connec- example, carrying out the algebra for a 53-pentahedron leads to a " scaling, v/ = 1/~ and hence, because
tion hetween spectral discreteness in the quantum geometry of gravity and tame ultraviolet behav- o, 8, and v > 1, the 54- and 3-pentahedra can’t both be
or. [ complete a detailed analysis of the geometry of a pentahedron, providing new insights mto Q0 y—11  constructable. Gonintuing with this logic a pentahedral phase
the volume operator and evidence of classical chaos 1n the dynamucs 1t generates. These results | | diagram can be bult [see (1)].

reveal an unexplored realm of application for chaos m quantum grawity. |2} | 21

- T'his allows you to solve the problem of building a pentahedron

. oiven its area vectors [2]. The different adjacency classes are con-

Dynamical polyhedra

Minkowski proved m 1697 that the shape of a convex polyhedron 1s determined by its

nected to each other by Pachner moves [see (11) for a schematic].

area vectors { Ay},

| Ay| = areaof face £; Ay = normal to face ¢,

satistying closure,

At tAy=o0 (Quantum chaos Plo)
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His proof was not constructive, and given the area Chaotic quantum systems generically exhibit level repul- 23: j /T\\ T
vectors it 1s a challenge to build a polyhedron. sion: the probahility PP (s) of a level spacing s rapidly 06f \“/f\Wigner N i}/}g—i
If we interpret area vectors physically as angular mo- I goes to zero with the level spacing 0or ]Z \\Sjlfmlse \\ S ;
menta, then polyhedra hecome dynamical systems with e Degenerate levels are supressed g‘; : : . / N :
the usual Foisson brackets . By contrast, integrable systems have Poisson level statistics o2} }f o H{\ » -

(Al AZ ) = ef]&:ﬁj AF. with the probability of small spacing enhanced. o / B":hxq;l .
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Any function of the area vectors can be taken as a Level repulsion

Hamiltoman; here we study the pentahedral volume

) Configuration space. equi-area pentahedron
H — Vpent(AE)-

These data are kmdly shared by Coleman-Smith and Muller [3] Numerical evidence from [1] and [3] Suggests that the
a) Local Lyupanov exp:

Pentahedral volume

classical volume evolution generated by the Hamilto-

hot =unstable nan H = Vient 1s chaotic.

A pentahedron can be continued to a tetrahedron by extending 3 of 1ts cool = stable

faces. The face areas of the pentahedron are scaled by a, 3, and . tor example, the local LYUP@OV cxponents (.)f pancl a)

These scalings can be found from the tetrahedral closure clearly show that the boundaries between adjacency re-
aAy + Ay + A5+ Ay =0, A

for example, -

b) Color code adjacency:  glons [see b)]are unstable.

Panel ¢) illustrates that the contours of constant volume,
) 13 and hence the volume evolution, frequently cross over
_ As-(A1 XA 39 . . .
Y = T R Ax A adjacency houndaries. Note: that the smallest physical
| 1 f volumes occupy a small region of the phase space.
The pentahedron’s volume can now be expressed as 22\ &=\ (o] Volume contours:
. 4
a function of the known tetrahedral volumes 2, (O C B swallwhme The Jeye] repulston of chaotic quantum systems together

: @ large volume ~ with the small phase space available at low volumes, 1.e. low
Vpent — g (’\/ CV@"Y — \/(C\f — 1)( — 1 — 1 \/Al AQ X Ag) 216‘0 : l . . .

density of states at small volume, yields our main conclusion:

P\ i f\i\ a volume gap 1s robust in loop grauvity.

Call 1t a 54-pentahedron 1if the two opposite triangular faces are face J and face 4; this determmes —— f 0 2T s

the adjacency of all the faces.

- - Conclusions
Spectral gaps in quantum gravit

In loop gravity hoth area and volume hecome quantum operators. The area spectrum has long heen

These results uncover a new mechanism leading to a volume gap 1n the spectrum of quantum gravity: the
level repulsion of chaotic quantum systems. The generic presence of a volume gap strengthens the ex-

known to be gapped: s there a volume gap?

pected ultraviolet finiteness of quantum gravity theories built on spectral discreteness. I find:
A4 A discrete volume spectrum seems to mply ves, but %

® Robust volume gap due to: chaos & low density of states at low volume

doubts have been raised; e.g., for an equi-area pentahe-

dron the number of volume states grows as A% but the ® Pentahedral volume dynamics implhies quantum volume states are spread over adjacencies

allowed range of volume grows more slowly, Viax ~ A2, ® [oop gravity contmnues to give physical cutotts at the Planck scale

do, more and more volume states are being crowded nto

the allowed range. The core question then 1s:

)1 gap  ® How robust is a volume gap? )1 b IO 1] E. Bianchi and HM. Haggard, PRL 107, (011301} 2011, [2] H.M. Haggard, PRD 87, (044020) 2015,

[3] C. Coleman-Smith and B. Miiller, PRD 87, (044047) 2013, [4] Detailed talk on website (see link below)
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