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Abstract

Due to quantum fluctuations, a black hole of mass M represents an average over an ensemble of

black hole geometries with angular momentum. This observation is apparently at odds with the

fact that the curvature singularity inside a rotating black hole is timelike, while the one inside a non-

rotating black hole is spacelike. Is the average of timelike singularities really spacelike? We use the

Bekenstein-Hawking entropy formula to introduce a microcanonical ensemble for spin fluctuations

and show that the onset of quantum gravity is always spacelike. We discuss the impact of this

result on singularity resolution in quantum gravity and hint at the possibility of an observational

test.
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I. INTRODUCTION: THE PUZZLE

In the quantum gravitational treatment of a spherically symmetric black hole a puzzle

arises. The symmetric Schwarzschild black hole has a singularity at its core where the curva-

ture diverges and general relativity breaks down. This singularity is sometimes described as

a moment of time, or as the end of spacetime, because all observers that enter the black hole

horizon reach it in a finite time no matter where or how they enter. This structure is use-

fully summarized in a Penrose causal diagram where a horizontal jagged line represents the

spacelike singularity. However, in quantum gravity, a classical spacetime like Schwarzschild

is actually a mixture of microstates in an ensemble of quantum spacetimes; the ensemble

characterizes the quantum fluctuations of the spacetime state and the number of microstates

in the ensemble is given by the exponential of the Bekenstein-Hawking entropy. In particu-

lar, the members of this ensemble will carry angular momentum and can be organized as a

sum over spins ~J ,

, (1)

where on the right the sum is over spin magnitude J = | ~J | and PM(J) is the weight for a

black hole of mass M and spin J . A rotating black hole is described by a Kerr metric and its

singularity is timelike as shown in its causal diagram, the vertical jagged line of Eq. (1). It

is because of this that a puzzle arises. We broadly agree that quantum gravity resolves all of

these singularities, but where or when should we locate the onset of quantum gravity? What

is the behavior of the quantum gravitational takeover? Is it spacelike, like the singularity

of Schwarzschild, or timelike, like that of Kerr? And how is it that the spacelike onset of

quantum gravity for a spherically symmetric black hole arises from the mixture of a set of

rotating quantum black holes as described by Eq. (1)?

These questions about spin fluctuations and black hole interiors lead to a fundamental

recognition about the onset of quantum gravity inside a black hole: despite spin fluctuations,
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the onset of quantum gravity is spacelike. There are two assumptions that go into our proof

that spin fluctuations do not change the nature of the onset of quantum gravity:

(i) that quantum black holes fluctuate according to a probability distribution determined

by the Bekenstein-Hawking entropy, and

(ii) that Planckian values for any curvature invariant lead to quantum gravity.

These two assumptions are compatible with all current approaches to quantum gravity. We

describe in more detail the two assumptions, offer several elaborations on them, and discuss

their consequences.

II. BEKENSTEIN-HAWKING ENTROPY AND THE BLACK-HOLE SPIN EN-

SEMBLE

A black hole of mass M and spin ~J has an entropy proportional to its horizon area

A(M,J) and given by the Bekenstein-Hawking formula [1],

SBH(M,J) =
A(M,J)

4`2P
=

(
1 +

√
1−

(
J

GM2/c

)2
)

2πM2

m2
P

, (2)

where `P ≡
√

~G/c3 is the Planck length and mP ≡
√
~c/G the Planck mass. The statistical

mechanical interpretation of this entropy is that a black hole of mass M and spin ~J is a

mixture of N ∼ expSBH(M,J) microstates. We show that an immediate consequence of the

presence of these microstates is the existence of a black-hole spin ensemble: the probability

that a black hole of mass M is found to have spin J is given by the probability distribution

PM(J) =
eA(M,J)/4`2P J2∫ Jmax

0

eA(M,J)/4`2P J2 dJ

, (3)

where Jmax = GM2/c. We will derive this formula and further clarify the nature of the spin

ensemble.

In asymptotically flat spacetimes, the ADM mass and angular momentum identify irre-

ducible representations of the asymptotic Poincaré group [2]. In a quantum theory of gravity

with asymptotically flat boundary conditions, the mass and angular momentum

M̂ , Ĵ , (4)
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provide a commuting set of operators whose eigenspaces are labeled by representations of

the asymptotic Poincaré group. We denote simultaneous eigenstates by |M, j;α〉 with

M̂ |M, j;α〉 = M |M, j;α〉 , and (5)

Ĵ |M, j;α〉 = ~
√
j(j + 1) |M, j;α〉 . (6)

For massive states, M > 0, the spin is labeled by the half-integer j. The index α labels

the states of an orthonormal basis for the Hilbert space. The Bekenstein-Hawking formula

for black hole entropy indicates that the vast majority of the states |M, j;α〉 are black-hole

microstates.

The Hilbert space of the quantum theory decomposes in sectors of given mass and spin,

H =
⊕
M

HM , with HM =
⊕

j=0, 1
2
,1,...

HMj . (7)

A rotating black hole of mass M and spin J = ~
√
j(j + 1) is understood as the maximally-

mixed state at fixed energy and angular momentum and is given by the density matrix

ρ( ) ≡ ρMj =
1

dimHMj

dimHMj∑
α=1

|M, j;α〉〈M, j;α| . (8)

The dimension of the Hilbert space HMj can be computed via semiclassical methods starting

from the canonical partition function written in terms of the Euclidean action, Z(β, ~ω) =

Tr
(
e−βM̂−~ω·

~J/~
)

=
∫

[Dgµν ] e
−SE [gµν ]/~, [3–5]. One finds that, up to logarithmic corrections,

the entropy of the mixture of microstates is given by the Bekenstein-Hawking formula,

S( ) = −Tr(ρMj log ρMj) = log(dimHMj) = A(M,J)

4`2P
+ O

(
log M

mP

)
. (9)

On the other hand, a black hole of mass M is understood as given by the microcanonical

ensemble in which only the mass M is fixed. The state is given by the density matrix

ρ( ) ≡ ρM =
1

dimHM

∑
j

dimHMj∑
α=1

|M, j;α〉〈M, j;α| , (10)

where the dimension dimHM =
∑

j dimHMj can again be computed via semiclassi-

cal methods. In fact, taking into account the logarithmic corrections log
(
dimHMj

)
=

A(M,J)

4`2P
+ 1

2

(
c0 − 3

2

)
log A(M,J)

4`2P
+ . . . in Eq. (9) (with c0 = 212

45
determined by graviton loop
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corrections and the −3
2

term due to the choice of ensemble with fixed spin [5]), one finds

that the entropy of the microcanonical state defining a Schwarzschild black hole is

S( ) = −Tr(ρM log ρM) = log(dimHM) = A(M,0)

4`2P
+ c0 log A(M,0)

4`2P
+ · · · . (11)

Computing the logarithmic corrections explicitly highlights a remarkable property of the

microcanonical ensemble. The logarithmic corrections show that the ensemble of states

with M fixed has a larger entropy than the ensemble with M and J fixed and with the spin

set to J = 0. The microcanonical ensemble ρM is not the zero-spin limit of the ensemble

ρMj.

The microcanonical ensemble (10) can be written as a mixture of states with fixed mass

and spin as ρM =
∑

j pn(j) ρMj, where the probability of spin j is given by

pM(j) =
dimHMj∑
j dimHMj

. (12)

This is the ratio of dimensions of the two Hilbert spaces, the one at fixed mass and spin,

and the one at fixed mass. The relation between the microcanonical state of a black hole of

mass M and the one of a black hole with fixed mass and spin is then

ρ( ) =
∑
j

pM(j) ρ( ) . (13)

For large mass M � mP , the dimension of the Hilbert space HMj is well approximated by

the leading-order semiclassical term, dimHMj ∼ eA(M,J)/4`2P δM 4πJ2δJ . In this limit, the

probability pM(j) reduces to the formula (3) for PM(J), and the expression (13) reproduces

the diagrammatic formula, Eq. (1).

III. THE ONSET OF QUANTUM GRAVITY

No matter the specific theory of quantum gravity, the common expectation is that quan-

tum gravitational phenomena are significant at Planckian curvatures. To establish the claim

that—despite spin fluctuations—the onset of quantum gravity is spacelike, we consider a

curvature invariant and discuss its behavior for the Kerr metric.

The Kerr metric is determined by two length scales, the Schwarzschild radius rS ≡

2GM/c2, and the Kerr parameter a ≡ J/Mc where M is the mass and J is the angular

momentum of the black hole. As this metric is a vacuum solution of the Einstein equations,
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the interesting curvature invariants only start with contractions of the full Riemann tensor, or

equivalently the Weyl tensor Cµνρσ. Intriguingly, the two independent quadratic invariants

formed from the Weyl tensor can be collected into a single complex Weyl scalar W ≡

(Cµνρσ + i ∗Cµνρσ)Cµνρσ, where ∗Cµνρσ ≡ 1
2
ε αβ
ρσ Cµναβ is the dual Weyl tensor. In Boyer-

Lindquist coordinates this invariant has a remarkably simple magnitude

|W (r, θ)| =
√

(CµνρσCµνρσ)2 + (∗CµνρσCµνρσ)2 =
12 r2S

(r2 + a2 cos2 θ)3
. (14)

While the real and imaginary parts of W generally oscillate as you approach the ring singu-

larity of Kerr, this invariant does not and it has a transparent dependence on the angle of

approach. For a = 0, it is the Kretschmann invariant.

FIG. 1: The Weyl scalar |W | is a useful measure of the strength of curvature because it en-

velopes both the standard vacuum Kretschman |C2| and Euler-Pontryagin |∗CC| scalars. All

three curves are evaluated at a polar angle of θ = π/4, for a Kerr parameter a = 0.7, and for

a black hole mass with equivalent Schwarzschild radius of rS = 1 km. On the equatorial plane

θ = π/2 the curvature diverges near zero radius.

For a vacuum Kerr spacetime we define the onset of the quantum gravity region as the

surface on which the curvature invariant |W | first becomes Planckian, or equivalently,

the Planckian curvature radius r∗ is defined by |W (r∗, π/2)| = 1/`4P . (15)

There is a candidate mechanism that can protect the onset of quantum gravity against the

odd discontinuous flip of the singularity from spacelike to timelike under a spin fluctuation:

the generation of an inner horizon. The horizon condition ∆ ≡ r2 − rSr + a2 = 0 for a
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FIG. 2: (a) The physical Penrose diagram of a Kerr black hole. For a quantum fluctuation δJ

of the angular momentum, the timelike singularities lie deep in the quantum region and the onset

of quantum gravity at r∗ is spacelike (double line). (b) The dimensionless parameter space of a

Kerr black hole. The regions where r∗ is spacelike (yellow) and timelike (blue) are shown as well

as the contours below which 99.99% and 50% of all spin fluctuations are contained.

Kerr black hole has two roots r± ≡
rS
2

[
1±

√
1− (2a/rS)2

]
. The outer root r+ acts as

the event horizon for the eternal black hole, but as a black hole spins up a second horizon

separates from r = 0 and develops at r−. This inner horizon is null and is a Cauchy horizon

beyond which the Cauchy development cannot be continued [6]. Considerable effort has

been devoted to the study of the classical and the quantum stability of the Cauchy horizon

[7, 8], a topic we will take up in the Discussion section below.

In the case of spin fluctuations of a black hole of mass M , it is possible that quantum

gravity takes over before arriving at the inner horizon. If so, then the odd flip in the nature

of the singularity at zero spin is an irrelevant mathematical structure that does not play a

role in the physics of the black-hole spin ensemble. The onset of quantum gravity would be

spacelike not only for the Schwarzschild term on the left-hand side of Eq. (1), but also for

the Kerr terms on the right-hand side which should be drawn as in Figure 2 (a).

To test this conjecture we characterize the black hole in its J and M parameter space,

Fig. 2 (b). Computing black hole spin fluctuations requires quantum gravity and can be

achieved using the black-hole spin ensemble (3) derived from the Bekenstein-Hawking en-
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tropy formula. The fluctuation contours of Fig. 2 (b) are constructed by scanning through

the masses and at each mass identifying the value of J for which the indicated fraction of

the distribution is achieved. In the limit M � mP the spin fluctuations is δJ = ~√
2π

M
mP

.

We compute the Planckian curvature radius r∗ and—using Eq. (3)—the 50% and 99.99%

intervals for the angular momentum fluctuations. The light (yellow) region of the plot shows

the parameter space for which the onset of quantum gravity at r∗ is spacelike. The angular

momenta resulting from quantum fluctuations (black contours) are always hidden in the

quantum fog of high curvature and this resolves our puzzle. Thus, Figure 2 (a) depicts a

physical version of the causal diagram of a rotating black hole with small spin. The onset

of quantum gravity is spacelike and we have depicted it with a double line. Quantum fluc-

tuations in a black hole’s spin do not change the character of the onset of quantum gravity;

it is always spacelike.

IV. DISCUSSION

The analysis of spin fluctuations of a quantum Schwarzschild black holes provides a new

probe of the spacelike nature of the onset of quantum gravity. In this section we discuss

the relation of our results to previous investigations of the onset of quantum gravity inside

black holes and elaborate on the role played by the spin ensemble.

The angular momentum imparted to a black hole by a spin fluctuation is quite small,

only 4000 kg m2 s−1 for a solar mass black hole (which corresponds to a Planck-scale Kerr

parameter a). Thus, for black holes with larger angular momenta it is no longer the case

that the r∗ determined by the background curvature alone is spacelike and precedes the

Cauchy horizon. However, quite early on it was noted that the interaction between fields

and the background might lead to large curvatures in the neighborhood of the Cauchy

horizon. Penrose [7] recognized that a blue shift instability at the Cauchy horizon indicates

new physics. This was later convincingly established by Poisson and Israel who found that in

a model of collapse to a rotating black hole massive outflow from the collapsing star leads to

an exponentially growing mass parameter in the interior and to Planckian curvatures before

the inner horizon [8], see also [9]. Indeed mass inflation, as they called it, is quite generic

when a black hole accretes. Fo an accreting black hole, even weakly accreting inflows interact

with the small outflow to drive the exponential growth [10]. Other developments include

a complementary analysis of the Cauchy horizon [11], analysis of the ingoing inner horizon
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(the complement to the Cauchy horizon) [12], and the development of precise theorems [13].

All of this work points to singular behavior at the inner horizon, often due to back reaction,

which must then be preceded by the onset of quantum gravity.

Our result extends these previous results to the context of a nearly Schwarzschild black

hole, spinning only due to its quantum fluctuations. Of course, such a well isolated black hole

shielded from any sort of accretion is an idealization. However, we find it quite remarkable

that this highly isolated system has a spacelike onset of quantum gravity, so that even

quantum fluctuations do not invalidate this feature of quantum black holes. The complete

consistency of all of these results leads to a remarkable principle: the onset of quantum

gravity is always spacelike. This principle may be useful in more deeply characterizing

quantum gravity in the strong gravity regime.

There is also growing interest in what happens after the onset of quantum gravity, in-

cluding: evolution through the quantum region leading to a white hole remnant scenario

[14]; quantum bounces [15]; Planck stars [16]; and the gauge-gravity no transmission prin-

ciple, considered for instance in [17]. These works have focused on the effects of spacelike

singularities. Quantum gravity is also expected to resolve the singularities of rotating black

holes, but no mechanism for the timelike case has been identified. Our results show that the

emphasis on spacelike transitions is appropriate, at least for small angular momenta. In the

presence of more extreme back reaction additional tools will need to be developed.

The microcanonical ensemble of Eq. (3) applies to primordial black holes. While the

effects of the quantum fluctuations of spin on the inside of a black hole cannot be probed

via astrophysical measurements,1 the distribution PM( ~J), and through it the assumption

(i), could be constrained by LIGO, Virgo, and future gravitational wave observatories. A

population of primordial black holes with spin prior determined by (3) and allowed to evolve

through a few generations of mergers could give rise to a distribution of spins in present day

black holes distinct from the evolutions of the uniform prior considered in [18]. If so, the

imminent transition from single gravitational wave events [19] to population analyses could

probe the assumption (i), the consequences of this assumption discussed here, and provide

the first experimental test of the Bekenstein-Hawking entropy.

1 This is forbidden by the event horizon, but event horizons are teleological and this statement may need

to be weakened for dynamical horizons.
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