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Abstract – Maslov indices are integers that appear in semiclassical wave functions and quan-
tization conditions. They are often notoriously difficult to compute. We present methods of
computing the Maslov index that rely only on typically elementary Poisson brackets and simple
linear algebra. We also present a singular differential form, whose integral along a curve gives
the Maslov index of that curve. The form is closed but not exact, and transforms by an exact
differential under canonical transformations. We illustrate the method with the 6j-symbol, which
is important in angular momentum theory and in quantum gravity.

Introduction. – Maslov indices are integers repre-
senting phase shifts in semiclassical expressions for wave
functions, matrix elements, and position-space representa-
tions of operators in quantum mechanics [1–3]. They are
essential to deriving correct quantization conditions and
for obtaining the correct interference patterns in sums over
classical paths, for example, in periodic orbit expansions
[4–15]. Maslov indices are responsible for the zero-point
energy of oscillators and are useful in applications from
quantum optics to quantum gravity.

In this paper we present new techniques for calculating
the Maslov index that involve only simple Poisson brack-
ets and linear algebra. For example, in the analysis of
spin networks we need just the standard Poisson brackets
of the components of angular momenta among themselves.
Further, a linear dependency between the differentials of
the angular momenta appears at caustics and allows the
calculation to proceed without reference to conjugate an-
gles, a significant simplification. This article deals with the
Maslov index along open or closed paths on a Lagrangian
manifold; the special case of closed paths, for which the
Maslov index is a winding number in the complex plane,
is significantly simpler [7–10].

Our techniques allow us to put the transformation prop-
erties of the Maslov index under canonical transformations
into a neat form, including the invariance for the case of
a closed path. The notion that quantization conditions

should be invariant under canonical transformations goes
back to Einstein [16], and has been an important part of
the mathematical literature on the Maslov index in recent
years [17].

The mathematical literature on the Maslov index is ex-
tensive [17–21] but difficult to use for computational pur-
poses in physical problems. This is the case, for example,
in the asymptotics of the Wigner 6j-symbol [22], which
plays an important role in the setting for the volume op-
erator in loop gravity [23]. The 6j-symbol has played a
central role in the road to [24–26] and conceptual devel-
opment of [27, 28] loop gravity, but several authors who
have studied its asymptotics have had to appeal to nu-
merical methods to compute the Maslov index [29, 30].
The only successful calculations of the Maslov index for
the 6j-symbol have been those that reduced the problem
to a one-dimensional system [31–33], an option not avail-
able in problems that are intrinsically multidimensional,
such as the 9j-symbol [34].

We also present several relations satisfied by the Maslov
index, including an expression for it in terms of a singular
differential form that is closed but not exact. We refer to
this differential form as singular because it is expressed
in terms of Dirac delta functions times the differentials of
smooth functions. This approach unifies the phase contri-
butions of the action and the Maslov phase into a single
differential form.
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We work in the phase space R2n with coordinates (x,p)
(but see the 6j-example below for other cases). A wave
function ψ(x) has a semiclassical representation as a sum
over branches; each branch has a phase S(x)/~. With
the right understandings, this notation covers energy and
other eigenfunctions, time-dependent wave functions, ker-
nels of operators such as 〈x|A|x′〉, matrix elements in an-
gular momentum theory, periodic orbit contributions in
the Gutzwiller trace formula, and other cases.

Derivation and Results. – The n-dimensional man-
ifold p = ∇S(x) in phase space is a Lagrangian manifold
[35], call it L. It is the level set Hi(x,p) = hi, i = 1, . . . , n,
where the Hi are a set of functions and the hi their val-
ues, and where {Hi, Hj} = 0 on L. (For energy eigenfunc-
tions, one of the Hi is the Hamiltonian.) These Poisson
brackets are required to vanish only on L, not necessarily
elsewhere in phase space; this means that conjugate (e.g.,
angle) variables on L may not exist, a case that must be
covered for applications to angular momentum theory.

Consider a point (x,p) on L, and let the Hamiltonian
vector fields generated by the Hi at this point be

Xi =
∑
j

Eji
∂

∂xj
+ Fji

∂

∂pj
, (1)

where Eij = {xi, Hj} = ∂Hj/∂pi, Fij = {pi, Hj} =
−∂Hj/∂xi. Vectors Xi are tangent to L and span its
tangent space, since {Hi, Hj} = Xj(Hi) = 0 (the final
expression is the vector field Xj acting on the scalar Hi).
Matrix Eij is the Jacobian of the projection πx from L
to x-space, in the bases Xi and ∂/∂xi; and Fij is that of
the projection πp from L to p-space, in the bases Xi and
∂/∂pi. Caustics in x-space, that is, of the wave function
ψ(x), occur where Eij is singular; here the semiclassical
wave function suffers a phase shift given by e−imπ/2, where
the integer m is the Maslov index. We view m as a func-
tion of a directed path γ on L, which passes through an
x-space caustic. Similarly, the matrix Fij is singular at
caustics in p-space (that is, caustics of the momentum
space wave function, the Fourier transform of ψ(x)). In
one dimension, p-space caustics never occur at an x-space
caustic. In higher dimensions, a p-space caustic can occur
on top of an x-space caustic, that is, F can be singular
when E is singular, a case that must be covered in prac-
tice. Initially, however, we assume that F is nonsingular in
a neighborhood of an x-space caustic, in which our curve
γ lies.

Maslov’s method [19] for computing his index involves
switching to the momentum representation in a neigh-
borhood of the x-space caustic. Maslov only carried
out the Fourier transform in a single variable, all that
is needed for a generic, first-order caustic. Here we use
a slight variation on the method, in which one Fourier
transforms in all the configuration space variables. The
phase of the momentum-space wave function is S̃(p)/~,
where S̃(p) = S(x) − x · p. Here x is understood to
be a function of p by restricting (x,p) to be on L.

The momentum-space action satisfies ∂S̃/∂pi = −xi and
Tij = ∂2S̃/∂pi∂pj = −(∂xi/∂pj)H = Tji, where the sub-
script H indicates that the Hi are held constant, that
is, the derivative is taken on L. The momentum-space
wave function is nonsingular (it has no caustics) in the
neighborhood of the x-space caustic, but when we Fourier
transform back to the x-representation, there is a phase
difference when the integral is evaluated on the two sides
of the x-space caustic. This gives rise to a relative phase
shift in the x-space wave function of e−imπ/2, where m
is related to the change in the signature of matrix T by
m = −(1/2)∆ sgnT . (The signature is the number of
positive minus the number of negative eigenvalues; T is
symmetric and has real eigenvalues.)

One or more of the eigenvalues of T pass through 0 at
the caustic, that is, T is singular at the caustic. This can
be seen by expressing T in terms of matrices E and F ; the
relation is T = −EF−1, as can be proved by manipulating
partial derivatives. Since F is nonsingular in the neighbor-
hood of the x-space caustic (by our assumptions) and E is
singular at the caustic, T is singular at the caustic. Thus
we have m = (1/2)∆ sgn(EF−1) = (1/2)∆ sgn(FTE),
where in the final expression we have used Sylvester’s the-
orem on the invariance of the signature under congruency
transformation by a nonsingular matrix (in this case, F )
and where FT is the transpose of F . Note that FTE, like
T , is symmetric.

For simplicity we assume that only one eigenvalue of T
(hence of FTE) changes sign at the caustic; this is the
generic situation. Let λ be this eigenvalue of FTE, and
let v be the corresponding (nonzero) eigenvector, so that
FTEv = λv. Also let u = Fv; since F is nonsingular,
u 6= 0. We consider F , E, λ, u and v to be functions of
a parameter t (not necessarily time) along the curve γ,
and we let t = 0 at the caustic, so that λ(0) = 0. Then
m = sgn λ̇(0); we assume λ̇(0) 6= 0 (the generic situation).

At t = 0, FTEv = 0; but since F is nonsingular, this
implies Ev = 0, and v spans the kernel of E at the caustic.
Matrix E is not symmetric, so its left and right eigenvec-
tors are not transposes of each other, but since FTE is
symmetric, we have vTFTE = uTE = 0 at t = 0, so u
spans the (left) kernel of E at t = 0. Now by differenti-
ating uTEv = λvT v with respect to t and using Ev = 0,
uTE = 0 and λ = 0 at t = 0, we find

m = sgnuT Ėv, (2)

evaluated at t = 0. This is our main result for a local
calculation of the Maslov index, that is, in a neighborhood
of a caustic.

To calculate m we first find the caustics, which are the
places where Ev = 0 has a solution v 6= 0; these are the
places where detE = 0. The matrix E is needed for the
amplitude of the semiclassical wave function, which can be
expressed as |detE|−1/2 [36, 37]; the amplitude diverges
at the caustics. At the caustic we find vector v with an
arbitrary normalization and phase; as mentioned, we are
assuming that the kernel of E is one-dimensional.
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Next we must find the vector u = Fv, which spans the
left kernel of E. If we have the matrix F we can just do
the matrix multiplication, but in many applications the
Poisson brackets in F involve angle variables and are not
easy to compute. Moreover, in some cases the Lagrangian
manifold is not a member of a foliation and angle variables
do not exist.

A different approach that avoids these difficulties is
based on the geometrical meaning of the vectors v and
u, which emerges if we multiply (1) by vi and sum on i.
At the caustic, where

∑
iEji vi = 0, this gives

∑
i viXi =∑

j uj∂/∂pj , where we have used u = Fv. Recalling that
the Xi are the Hamiltonian vector fields generated by the
Hi, we let Yi be the Hamiltonian vector fields generated
by the xi, that is, we let Yi = −∂/∂pi. Then we have∑
i viXi = −

∑
i uiYi. We see that there is a linear com-

bination of the Xi, that is, a vector tangent to L, that is
equal to a linear combination of the Yi, that is, a vector
tangent to the vertical Lagrangian manifold x = const.
The two Lagrangian planes tangent to the two manifolds
at the caustic have a nontrivial (one-dimensional) inter-
section.

If we regard the symplectic form ω at a point of phase
space as a linear map between vectors and covectors,
then Hamilton’s equations for the Hi can be written
Xi = ω−1dHi, and, similarly, Yi = ω−1dxi. Now mul-
tiplying the previous relation by ω, we obtain∑

i

vi dHi = −
∑
i

ui dxi. (3)

This equation allows the vector u to be determined, given
the vector v and the differentials dHi and dxi at the
caustic. The calculation is just linear algebra in the
cotangent space at the caustic. Finally, let the curve
γ be an orbit of one of the H’s, say, Hn. Then the t-
derivative in Ė is a Poisson bracket, and the Maslov index
is m = sgnuT {E,Hn}v. The calculation of the Maslov in-
dex is reduced to the calculation of Poisson brackets and
linear algebra.

As an example consider the one-dimensional Hamilto-
nian H = p2/2M + V (x), where H = H1 in the notation
above. In a one-dimensional case such as this we will write
e and f for matrices E and F , which now are scalars. Here
e = {x,H} = p/M , f = {p,H} = −V ′(x). The caustics
are where e = 0, that is, p = 0. Choosing v = 1, we
have u = fv = −V ′(x). The same result is obtained
from (3), that is, v dH = −u dx, since dH = V ′(x) dx
at the caustic where p dp/M = 0. Finally, using ė =
{e,H} = −V ′(x)/M , we have m = sgn[V ′(x)2/M ] = +1.
The Maslov index always increases by 1 at a turning point
in a kinetic-plus-potential problem.

The 6j-symbol is a less trivial example. In this case the
phase space is not R2N , but the method presented applies
in a symplectic chart, within which parts of the caustic set
on the Lagrangian manifold lie. Maslov indices relative to
such a chart are useful in applications, such as our work
on the asymptotics of the 9j-symbol [34], in which we did

not have the luxury of knowing the correct answer when
we started. The quantum mechanics of the 6j symbol [22]
involves four angular momenta, Jr, r = 1, . . . , 4 that act
on a product of four carrier spaces with quantum numbers
jr. Intermediate angular momenta J12 = J1 + J2 and
J23 = J2 + J3 with quantum numbers j12 and j23 are
defined. The 6j-symbol concerns the subspace

∑4
r=1 Jr =

Jtot = 0, upon which J2
12 and J2

23 have eigenbases |j12〉
and |j23〉. The 6j-symbol is proportional to the orthogonal
matrix connecting these bases,

〈j12|j23〉 = const×
{
j1 j2 j12
j3 j4 j23

}
. (4)

The 6j-symbol involves a quantum dynamical system in
which a state is a vector in the subspace Jtot = 0.

A state of the corresponding classical system is a
quadrilateral, not necessarily planar, whose edges are four
classical angular momentum vectors Jr of fixed lengths
Jr = |Jr|, modulo overall rotations. The vectors satisfy∑
r Jr = 0. If vectors J12 = J1 +J2 and J23 = J2 +J3 are

drawn in, the quadrilateral becomes Wigner’s tetrahedron
[38] with edge lengths Jr, r = 1, . . . , 4 and J12 = |J12|
and J23 = |J23|. The quadrilateral is flexible; changing
its shape while holding Jr, r = 1, . . . , 4 fixed changes the
classical state, as well as the lengths J12 and J23. The
space of shapes of the quadrilateral or tetrahedron is a
sphere, the phase space of the system [39–41]; the Poisson
bracket of any two functions f and g of Jr, r = 1, . . . , 4
is {f, g} =

∑4
r=1 Jr · (∇rf × ∇rg), where ∇r = ∂/∂Jr;

this is the standard Poisson bracket for classical angular
momenta.

Interesting classical observables on this phase space are
J12, J23 and V = J1 · (J2 × J3) (this is six times the vol-
ume of the tetrahedron). The Hamiltonian flow generated
by J12 is a rotation of vectors J1 and J2 about the axis
defined by J12, while holding J3 and J4 fixed; we call the
conjugate angle φ12. Similary, J23 generates rotations of
J2 and J3 with angle φ23 about axis J23. These rotations
are rigid, relative motions of two faces of the tetrahedron
about their common edge (J12 or J23). If we denote the
interior dihedral angles of the tetrahedron about edges J12
and J23 by α12 and α13, with 0 ≤ α12, α23 ≤ π, then when
V > 0 we have φ12 = α12 and φ23 = −α23; this is clear
from a picture of the tetrahedron. With a change of signs
for the case V < 0, the angles φ12 and φ23 lie in the range
−π ≤ φ12, φ23 < π on the space of all tetrahedra. For
semiclassical purposes we set Jr = jr + 1/2 [24,37].

In calculating Poisson brackets the vectors Ars =
Jr × Js are convenient; the magnitude Ars = |Ars| is
twice the area of the face spanned by Jr, Js. We find
{J12, J23} = −V/J12J23 = dJ12/dφ23 = −dJ23/dφ12;
{V, J12} = dV/dφ12 = A34A12 cosφ12/J12; and {V, J23} =
dV/dφ23 = −A23A14 cosφ23/J23.

To compute the Maslov index of the 6j-symbol we com-
pare 〈j12|j23〉 with the energy eigenfunction ψ(x) = 〈x|H〉,
which shows that we should identify H (or H1) above
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with J23 and x with J12. As for p, we identify it with
−φ12 so that {x, p} = 1 goes into {J12,−φ12} = 1.
The idea is that the Lagrangian manifold is specified by
J23 = j23 + 1/2 = const, while J12 provides the repre-
sentation of the wave function. The caustics occur when
e = {J12, J23} = 0, that is, when V = 0; these are the
flat tetrahedra. To obtain u and v we need a relation
between dJ12 and dJ23. This may be obtained by dif-
ferentiating the Cayley-Menger [24] or Gram [41] matrix,
but an approach based on Poisson brackets may be given.
Let V be considered a function of J12 and J23. Then
{V, J12} = {J23, J12} ∂V/∂J23, which combined with the
above gives ∂V/∂J23 = A12A34J23 cosφ12/V . Similarly,
consideration of {V, J23} gives ∂V/∂J12. The results are
summarized by

V dV = A14A23 cosφ23 J12 dJ12 +A12A34 cosφ12 J23 dJ23.
(5)

Now setting V = 0 to evaluate at the caustic and writing
v dJ23 = −u dJ12, we find u = A14A23J12 cosφ23 and v =
A12A34J23 cosφ12. Finally, defining ė by {e, J23} (that is,
evaluating the Maslov index along an orbit of J23), we find
ė = A14A23 cosφ23/J12J

2
23, when evaluated at the caustic.

Then the Maslov index is m = sgnuėv = sgn cosφ12; it
is 1 when φ12 = 0, and −1 when φ12 = π (the only two
possibilities for a flat tetrahedron). Notice that in this
calculation we did not need any Poisson brackets involving
the angles φ12 or φ23.

The result (2) was derived under the assumption that
detF 6= 0 in a neighborhood of the point where detE = 0;
but it turns out to be correct even when x- and p-space
caustics coincide. Such a coincidence typically occurs on
a Lagrangian manifold of dimension ≥ 2, and in cases
of symmetry, such as central force motion, it may occur
everywhere. When detF = 0 the vector v must be in-
terpreted as any nonzero vector in the kernel of E at the
caustic, not as the eigenvector of FTE with eigenvalue
0. Vector u is still defined as Fv, and can be calculated
exactly as above (without the explicit knowledge of F );
although F is singular, it turns out that Fv 6= 0. Rel-
evant theorems covering the case when detE = 0 and
detF = 0 are the following. First, kerE ∩ kerF = {0};
next, kerFTE = kerE ⊕ kerF ; and third, F maps kerE
invertibly into kerET . Thus, the singular F becomes non-
singular when restricted to kerE.

Before turning to global considerations, we briefly note
that the methods presented here are also valuable for com-
putation of the Conley-Zehnder index [42]. The Conley-
Zehnder index generalizes Morse theory to the symplectic
context [43]. This index applies to closed paths and mea-
sures the winding of neighboring trajectories of energy E
about a given periodic trajectory of that energy. This
Morse-like index gives a new perspective on the geometry
of the Maslov contributions to the Gutzwiller trace for-
mula. Several works have demonstrated the connection
between the Conley-Zehnder index and the Maslov index,
see [44–49] and references therein. The formulation of [20]

is particularly close to that of the present work and shows
that the formulas presented here will also ease the com-
putation of the Conley-Zehnder index.

So far we have presented local results, useful for calcu-
lating m in the neighborhood of a caustic. Now we present
a global result, valid over the whole Lagrangian manifold.
If we have a function f on a manifold, then the singu-
lar differential form δ(f) df = (1/2)d sgn f is the “count-
ing form” for the crossings of the surface f = 0, that is,∫
γ
δ(f) df counts the number of times γ crosses the sur-

face going from negative f to positive, minus the number
of crossings the other way. Since the caustic set on the La-
grangian manifold occurs where detE = 0, we might sus-
pect that there is a singular differential form µ, such that
the integral of µ along γ gives the Maslov index associated
with the curve, and that µ involves δ(detE) d(detE). In-
deed, this is the case; we find

µ = sgn tr(CTF ) δ(detE) tr(CT dE), (6)

where C is the cofactor matrix of E. This result ap-
plies only to first order caustics, where dim kerE = 1;
but higher order caustics can be perturbed into a set of
first-order caustics, so they represent limiting cases of this
form. Note that tr(CT dE) = d(detE), so the counting
form for the surface detE = 0 is modulated by the factor
sgn tr(CTF ). It can be shown that tr(CTF ) is never zero
when detE = 0, even if detF is also 0. Noting that C is
proportional to u ⊗ vT , where v 6= 0 is a vector in kerE
and u = Fv, it is easy to derive (2) from (6). We found
it easiest to derive (6) itself as the limit of the differential
of the phase of the complex amplitude determinant in a
coherent state representation, in the limit in which the co-
herent state representation becomes the x-representation.
The form µ is closed but not exact, so its integral along γ
is invariant under continuous deformations of path.

The phase S(x) is the integral of the differential form
θ = p · dx on L; this form is closed but not exact (in
general) on L. By combining this form with the Maslov
form µ, the Bohr-sommerfeld quantization condition can
be expressed as

∮
(θ − π

2µ) = 2nπ. In this way the usual
action and the Maslov phase are unified in a single form.

The quantization condition cannot depend on the rep-
resentation, that is, the system of canonical coordinates
in which the calculation is carried out, an idea that goes
back to Einstein [16]. Taking first the one-dimensional
case, we let coordinates (x′, p′) be related to (x, p) by a
linear transformation,(

x′

p′

)
=

(
A B
C D

)(
x
p

)
, (7)

where A, B, C, D are constants and AD−BC = 1. Then e
and f transform into e′ and f ′ by the same matrix as x and
p. In one dimension (6) becomes µ = (sgn f)δ(e) de. Writ-
ing µ′ = (sgn f ′)δ(e′) de′, the Maslov differential forms in
two systems of canonical coordinates are µ and µ′. Then
we find that µ−µ′ = dK(e, e′), whereK = (1/2) sgn(e′Be)
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when B 6= 0, and K = 0 when B = 0. That is, µ trans-
forms by the addition of an exact differential when the
system of canonical coordinates is changed, so that

∮
µ

is invariant. In these calculations we use (d/dx) sgn(x) =
2δ(x).

We will just cite the analogous results in the multidi-
mensional case. The Maslov forms in the two systems
of canonical coordinates are a primed and unprimed ver-
sion of (6). In the multidimensional case a linear canon-
ical transformation is still specified by (7), where now
A, B, C and D are n × n matrices such that the whole
2n × 2n matrix is symplectic (see Appendix A of [50]).
Under the linear canonical transformation (7) µ trans-
forms by an exact differential, µ − µ′ = dK, where now
K = (1/2) sgn(ETB−1E′) when B is nonsingular. Thus∮
µ around a closed loop is independent of the canonical

coordinates. Function K is a kind of F1-type generat-
ing function [51]. Knowledge of K allows one to easily
switch the Maslov phase from one representation to an-
other. With slight changes, it can be used to switch to the
coherent state representation, which is popular in recent
applications [52,53] and in approaches based on geometric
quantization.

The results presented in this article are of great assis-
tance in computing the Maslov index in various applica-
tions, including the 9j-symbol [34], which is intrinsically
2-dimensional. The strength of this method is that it
reduces what is usually a delicate and lengthy tracking
of signs to just two ingredients: the calculation of Pois-
son brackets of the observables that directly define the
wave function and the corresponding Lagrangian mani-
folds (these are also necessary for computing the ampli-
tude [36, 37]); and a linear algebra calculation that alle-
viates any need for the introduction of angle coordinates.
We will report on details, extensions, and applications of
the results presented here in future publications.
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