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ABSTRACT

Future space telescopes will directly image extrasolar planets at visible wavelengths. Time-resolved
reflected light from an exoplanet encodes information about atmospheric and surface inhomogeneities.
Previous research has shown that the light curve of an exoplanet can be inverted to obtain a low-
resolution map of the planet, as well as constraints on its spin orientation. Estimating the uncertainty
on 2D albedo maps has so far remained elusive. Here we present exocartographer, a flexible open-
source Bayesian framework for solving the exo-cartography inverse problem. The map is parameter-
ized with equal-area HEALPix pixels. For a fiducial map resolution of 192 pixels, a four-parameter
Gaussian process describing the spatial scale of albedo variations, and two unknown planetary spin
parameters, exocartographer explores a 198-dimensional parameter space. To test the code, we pro-
duce a light curve for a cloudless Earth in a face-on orbit with a 90◦ obliquity. We produce synthetic
white light observations of the planet: 5 epochs of observations throughout the planet’s orbit, each
consisting of 24 hourly observations with a photometric uncertainty of 1% (120 data). We retrieve
an albedo map and—for the first time—its uncertainties, along with spin constraints. The albedo
map is recognizably of Earth, with typical uncertainty of 30%. The retrieved characteristic length
scale is 88±7◦, or 9800 km. The obliquity is recovered with a 1− σ uncertainty of 0.8◦. Despite the
uncertainty in the retrieved albedo map, we robustly identify a high albedo region (the Sahara desert)
and a large low-albedo region (the Pacific Ocean).

1. INTRODUCTION

Next-generation space telescopes like HabEx and LU-
VOIR promise to directly image nearby Earth twins
in reflected light, allowing astronomers to measure the
reflectance spectra of these planets (Des Marais et al.
2002), as well as to monitor their time-varying bright-
ness (Ford et al. 2001). We focus on this second goal,
but note that it may be impossible to properly interpret
spectra without context from time-resolved observations,
and vice versa.

Using only time-resolved photometry, we would like to
infer a planet’s spin and its albedo map (for a recent
review of exoplanet mapping, see Cowan & Fujii 2017).
Rotation and obliquity place strong constraints on the
late stages of a planet’s formation (e.g., Schlichting &
Sari 2007). Rotation also determines the frequency of
diurnal radiative forcing and the amplitude of Coriolis
forces, while obliquity determines the latitudinal distri-
bution of insolation and the amplitude of seasons. Sur-
face geography, on the other hand, bears witness to the
geophysical/geochemical processes operating on a planet
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(e.g., Abbot et al. 2012; Cowan & Abbot 2014; Fujii
et al. 2014), and—in the case of liquid water—can di-
rectly establish the habitability of a planet (Robinson
2017). Lastly, the spatial and temporal distribution of
clouds is determined by global climate, orography, and
large-scale circulation (e.g., Showman et al. 2013).

Much progress has been made since Ford et al. (2001)
showed that time-resolved photometry of Earth en-
codes information complementary to time-averaged spec-
troscopy. First of all, researchers demonstrated how
to use the brightness variations of a planet to estimate
its rotational period (Pallé et al. 2008; Oakley & Cash
2009). It was then shown that the rotational color varia-
tions of a planet can be used to infer the number, re-
flectance spectra, and longitudinal locations of major
surface types (Cowan et al. 2009; Cowan & Agol 2011;
Fujii et al. 2010, 2011; Cowan & Strait 2013; Fujii et al.
2017). Meanwhile, the rotational and orbital color vari-
ations of an unresolved planet can be analyzed to cre-
ate a 2-dimensional multi-color map—equivalently a 2D
map of known surfaces—and measure rotational obliq-
uity (Kawahara & Fujii 2010, 2011; Fujii & Kawahara
2012; Schwartz et al. 2016; Kawahara 2016).

Kawahara & Fujii (2010) demonstrated the retrieval of
a surface albedo map and the obliquity from simulated 1-
year light curves of an atmosphere-less Earth. Mapping
the surface from light curves is an ill-conditioned inverse
problem that is unstable to noise. To overcome it, they
adopted the physical condition that the surface albedo is
between 0 and 1 and recovered the rough surface features
of Earth. The obliquity was measured by minimizing
χ2 or the extended information criterion, along with its
uncertainty by bootstrap resampling.

Kawahara & Fujii (2011) and Fujii & Kawahara (2012)
applied the concept of 2D mapping to simulated light
curves of a realistic cloudy Earth, with an updated inver-
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sion technique. In these studies they employed Tikhonov
regularization for the albedo map instead of the bounding
condition. This method discards the components associ-
ated with small singular values of the design matrix and
is equivalent to adopting a Gaussian prior in a Bayesian
framework. Their recovered 2D surface maps at differ-
ent photometric bands exhibit features consistent with
the actual maps of cloud/snow cover, continents, and
vegetation. However, evaluating the uncertainty of the
recovered map and obliquity was left aside.

In this paper, we improve on the work of Kawahara
& Fujii (2011) in three important ways: 1) We base our
map on only five epochs of 1 day each, rather than a
year’s worth of exposures, 2) we fit for the characteristic
length scale of albedo markings on the planet, rather
than adopting an a priori spatial scale, and 3) we quantify
the uncertainty on the albedo map.

2. exocartographer

exocartographer is a fully Bayesian framework for
retrieving the albedo map and spin geometry of a planet
based on time-resolved photometry. The Python code
is open-source and available at https://github.com/
bfarr/exocartographer.

2.1. The Forward and Inverse Problems

We cannot hope to extract the same detailed infor-
mation from the light curves as went into them. We
will instead use a relatively simple surface integral that
captures the essential physics governing the light curves.
Following Cowan et al. (2013), we describe the time-
resolved reflectance of the planet as:

R(t) =

∮
A(θ, φ)K(θ, φ,S, t) sin θdθdφ, (1)

where A(θ, φ) is the 2D albedo map of the planet, which
we assume to be fixed, K(θ, φ,S, t) is the convolution
kernel, θ is co-latitude, φ is longitude, and S represents
planetary spin parameters that are not known a priori,
namely obliquity and its orientation with respect to the
observer. Computing R(t) given everything on the right
hand side of (1) is the forward problem.

The inverse problem is to determine A(θ, φ) and
S, given R(t), the photometric uncertainty σ, and a
parametrization of K. In practice, this entails repeatedly
solving the forward problem with varying parameters to
see which ones best match the data in hand. In order
for this to be computationally feasible, one must make
simplifying assumptions: the model used for retrieving
the albedo map and planetary spin is essentially a toy
model, albeit one that captures the first-order physics.
We adopt the kernel for diffuse reflection from Cowan
et al. (2013): K = 1

πV (θ, φ, t)I(θ, φ, t), where V and
I denote the visibility and illumination functions. All
of the time-dependence —and the dependence on plane-
tary spin— enter the forward problem through the vis-
ibility and illumination. They can be expressed com-
pactly in terms of the angles between the local normal
and the vector pointing towards the observer and the
star: V = max(cos γo, 0) and I = max(cos γ∗, 0), where
γo and γ∗ are the observer and stellar zenith angles, both
of which are a function of time and location on the planet.

The visibility and illumination functions are more use-
fully expressed in terms of latitude and longitude of the

sub-observer and sub-stellar positions:

V = max

{
sθsθo(cφcφo + sφsφo) + cθcθo
0

(2)

I = max

{
sθsθs(cφcφs + sφsφs) + cθcθs
0

(3)

where we have used s and c to denote sine and cosine, and
the o and s subscripts denote the sub-observer and sub-
stellar location, which are functions of time. The com-
putational crux of the forward problem is thus to quickly
compute the sines and cosines of these time varying an-
gles as a function of the orbital and spin parameters (e.g.,
Appendix A of Schwartz et al. 2016).

2.2. Basis Maps

In order to make the inverse problem tractable, we
need to adopt a parametrization for the albedo map,
A(θ, φ). As discussed in Cowan & Fujii (2017), there are
two complementary classes of basis maps one can adopt:
pixels and spherical harmonics. For the current appli-
cation it is necessary to switch back and forth between
these two representations to take advantage of both of
their strengths.

Spherical harmonics are an orthonormal basis, and
complete for any continuous map on a sphere. This
means that the coefficients we derive for an expansion up
to, say l = 3 should remain unchanged if we extend the
expansion to higher l. (In practice this is only strictly
true if one is decomposing a map rather than a light
curve, but it is roughly true for light curves, too: adding
higher-order spherical harmonics should only produce
small changes in the lower-order coefficients). Moreover,
the spherical harmonic basis set exhibits a null-space:
certain maps have no light curve signature. By using
spherical harmonic basis functions, we can trivially quan-
tify the extent to which our Gaussian Process prior con-
strains otherwise unconstrained coefficients. The spher-
ical harmonic representation is convenient for mapping
because it enables coherent jumps in large regions of the
planet, and enables a straightforward application of reg-
ularization, as described below.

Pixels are also an orthonormal basis. They have a more
intuitive nullspace (e.g., latitudes more than π/2 away
from the sub-observer latitude are simply unobservable
and hence in the nullspace). The pixel representation is
convenient because the albedo of a pixel must be between
0 and 1, which makes it easy to propose parameter jumps.

We use Hierarchical, Equal Area, and isoLatitude Pix-
elation (HEALPix)8 pixels, so our map parameters are
the albedo of each pixel (see Figure 1 for an example).
HEALPix is superior to a regular lat-lon grid because all
pixels are the same area, nothing is weird at the poles,
and it plays well with spherical harmonics. It takes a con-
siderable amount of time to output the latitude and lon-
gitude of the HEALPix pixels, so we do this once ahead
of time. Since the latitude and longitude only appear
in Eqns 2 and 3 as trigonometric functions, we actually
pre-compute {cos θ, sin θ, cosφ, sinφ}.

The base HEALPix resolution is 12 pixels. Higher res-
olutions are defined by Nside, the number of divisions

8 http://healpix.sourceforge.net/

https://github.com/bfarr/exocartographer
https://github.com/bfarr/exocartographer
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Fig. 1.— The top map shows the true map used to generate the
light curve, down-sampled to the resolution of our model. This is
followed by the 10th percentile, median, and 90th percentile of the
marginal posterior distributions for the albedo of each pixel. The
10th percentile map clearly shows a reflecting region (the Sahara
Desert) while the 90th percentile clearly shows a large dark region
(the Pacific Ocean). These maps therefore establish the presence
of continents and oceans on the the planet, with all that implies
for habitability.

along the side of a base pixel. The number of HEALpix
pixels in a map is therefore Npix = 12N2

side. We test
the necessary resolution of the kernel by producing light
curves with the same map, but with kernels of different
resolution. We find that Nside = 8 and 4 introduce pix-

elation error near quadrature of 10−3, and a few ×10−3,
respectively. Photometry of directly imaged planets is
unlikely to be better than 1% in the foreseeable future
(Cowan et al. 2009; Fujii & Kawahara 2012), so we deem
that Nside = 4 is sufficient for our purposes (Fujii &
Kawahara 2012 use Nside = 8).

One can devise a heuristic for the Nside one should
adopt as a function of orbital phase. The kernel is a lune
and therefore has a height of π and a width π−α, where
α is the star-planet-observer “phase angle”. Each pixel
has an angular area of 4π/Npix, and an angular size of√

4π/Npix =
√

π
3N

−1
side ≈ N−1

side. In order to properly
resolve the kernel, one would like at least three pixels
across the narrow width of the kernel: N−1

side . (π−α)/3,
suggesting that the minimum resolution at a given orbital
phase is Nside & 3/(π − α). At quadrature (α = π/2),
for example, we find that the minimum Nside is 6/π ≈ 2,
justifying our use of Nside = 4.

Our map parameters are the pixel albedos. The ker-
nel of the convolution is computed on the Healpix map,
so the transformation from map to light curve is simply
matrix multiplication. But the Gaussian Process prior is
applied on the spherical harmonic coefficients, aml , so we
must convert from pixels to spherical harmonics at each
step in the MCMC. (At first blush, it seems that one
could decompose the kernel into spherical harmonics as
well and perform the convolution in Y ml space, but this
is no faster because there are roughly as many spheri-
cal harmonics as there are pixels.) Unfortunately, one
cannot have exactly the same number of pixels as spher-
ical harmonics. In particular, for Nside = {1, 2, 4, 8} the
number of pixels is Npix = {12, 48, 192, 768}. The num-
ber of spherical harmonics is NSH = (lmax + 1)2, which
corresponds to NSH = {9, 16, 36, 49, 169, 196, 729, 784}
for lmax = {2, 3, 5, 6, 12, 13, 26, 27}. Our chosen Healpix
resolution of Nside = 4 roughly translates to lmax = 13.
Since NSH is slightly greater than Npix, we are slightly
over-constraining the map, as described below.

2.3. Gaussian Process

Our adopted resolution of Nside = 4 means that we
have 192 map parameters, namely the albedo of each
pixel. This is more than the 120 data we will fit below, so
we must apply additional constraints on the pixel values.
The Gaussian Process (GP) prior on the map imparts a
preferred length/angular scale to the albedo structures,
which could correspond to the typical size of clouds or
continents on a given planet. Unlike standard regular-
ization, we do not have to choose that angular scale a
priori, rather it is a fitted parameter along with the pixel
values themselves and the viewing geometry parameters.

At each step in the fit, all of the pixels, viewing param-
eters, and GP parameters are varied independently. We
then use the current GP model to evaluate the prior on
the current map. The GP parameters themselves have
priors, so there are two layers of priors, making this a “hi-
erarchical” model. The GP parameters and their priors
are: the mean albedo (flat prior), the standard deviation
of the albedo (prior is flat in log), the preferred angular
scale (flat prior between 1/3 of a pixel to 3π), and the
relative amplitude of spatially-uncorrelated albedo vari-
ations (flat prior between 0 and 1). Since the priors on
the GP parameters only indirectly affect the posterior,
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these choices are not critical.
The posterior, the probability of parameters, θ, given

data, d, is given by:

p(θ|d) =p(θGP)p(θmap|θGP)

× p(θorb)p(d|{θmap, θorb}), (4)

where the last term is the likelihood of the data given
the map, orbital, and Gaussian process parameters.

Evaluating the GP prior (particularly the multivariate
Gaussian likelihood) in pixel space is expensive, so we
take advantage of the property that any Gaussian map
whose correlation matrix depends only on angular sepa-
ration between points will have a diagonal covariance ma-
trix in Y ml space (i.e., the spatial analog of stationarity
in the time domain; stationary processes are completely
described by their Fourier-space power spectrum, which
is the diagonal of the covariance matrix in Fourier space).
Furthermore, any map that is statistically isotropic will
have a Y ml covariance that is only a function of l, which
we will refer to as Cl. So, instead of computing the co-
variance matrix and using a multivariate Gaussian likeli-
hood in pixel space, we compute the aml coefficients, and
use a Gaussian likelihood in Spherical Harmonic space.
Each aml is distributed like aml ∼ N

(
0,
√
Cl
)
.

There is only one final wrinkle: the number of degrees
of freedom in aml coefficients is not equal to the number
of pixels, as described above. We can either: 1) under-
constrain the pixels by using an lmax that corresponds
to fewer aml coefficients than pixels, which will result in
some linear combinations of pixels (corresponding to the
Y ml with l > lmax) that are unconstrained by the prior;
or 2) over-constrain the pixels by choosing an lmax that
corresponds to more aml coefficients than pixels, meaning
the effective prior imposed in pixel space is not exactly
the squared-exponential kernel. We choose to do the lat-
ter, so the pixels are over-constrained. This makes sam-
pling easier, since no combinations of pixels can run away
to infinity.

2.4. Viewing Geometry

We assume that all of the parameters specifying the
viewing geometry are known a priori, except for the
planet’s spin orientation (obliquity, and it’s orientation
with respect to the observer). The remaining parameters
can either be constrained by other means (the orbital in-
clination and period, as well as the planet’s instantaneous
location in its orbit can be constrained by radial veloc-
ity, stellar astrometry, or planetary astrometry), or are
arbitrary (we don’t worry about offending extraterrestri-
als by redefining their Greenwich). We presume that the
planetary rotation period is already known.

2.5. Parameter Sampling

For a given light curve, we use the maximum likelihood
estimator Powell to determine the best-fit map and view-
ing geometry, especially the planet’s spin. We use this as
the initial guess for a thorough exploration of parameter
space to determine parameter uncertainties.

In order to explore parameter space, exocartographer
uses the Markov Chain Monte Carlo emcee (Foreman-
Mackey et al. 2013). In particular, we use parallel tem-
pering (Vousden et al. 2016) to improve sampling effi-
ciency of the high-dimensional, non-linearly correlated

posterior.

3. TESTING exocartographer

3.1. Synthetic light curve

We produce an idealized light curve with hourly ca-
dence using a cloud-free toy model of Earth assuming
Lambertian reflection (a higher resolution version of the
top panel of Figure 1) and adopting a face-on orbit
(i = 0) and 90 degree obliquity, but otherwise Earth-like
values (1 day rotation, and 365 day orbit). The synthetic
light curve is shown in Figure 2. This is the most favor-
able viewing geometry for exoplanet mapping: 1) the
planet–star projected separation is constant and hence
the planet is visible throughout its orbit, 2) since it is
always at quadrature, scattering phase effects can be ne-
glected, 3) the planet is viewed equator-on and therefore
the entire planet can be mapped, and 4) the large obliq-
uity ensures that all latitudes are well illuminated at at
least one point in the orbit, making it possible to recover
a faithful map of the entire planet. Indeed, this ideal-
ized scenario is precisely what Kawahara & Fujii (2010)
adopted for their seminal paper.

Leveraging the work of Schwartz et al. (2016) we only
consider 5 epochs, and in deference to the fact that these
missions will be horribly over-subscribed, we only observe
the planet for slightly more than a planetary rotation at
each epoch. Considering 5 days—rather than a year’s—
worth of data has the ancillary benefit of reducing the
run time of forward model calls by almost two orders
of magnitude. Generating a light curve across 5 days
with a 1 hour cadence from a 192-pixel map takes 1.6
ms with a 3 GHz Intel Xeon W processor, and a full
posterior probability density evaluation (including light
curve generation) takes 2.3 ms.

3.2. Retrieval Results

The retrieval exercise was a surprising success. We
can successfully model the simulated photometry (Fig-
ure 2), but this is nothing to write home about: as
stated above, the problem would be under-constrained
if it weren’t for the Gaussian Process prior. More im-
portantly, using only 5 days worth of photometry, we
recover the obliquity and its orientation to high preci-
sion (Figure 3), and the albedo map of the planet with
enough precision to robustly identify a high-albedo re-
gion (the Sahara Desert) and a low-albedo region (the
Pacific Ocean). The 10th percentile, mean, and 90th per-
centile maps are shown in Figure 1. Although previous
mapping efforts had proven that the best-fit map bears
a resemblance to Earth (Kawahara & Fujii 2010, 2011;
Fujii & Kawahara 2012), we have now shown that—even
with very limited orbital coverage—the map uncertain-
ties are small enough to make robust inferences about
the surface character of the planet.

4. DISCUSSION & FUTURE WORK

We have built an open-source, modular code that
builds on Fujii & Kawahara (2012). Crucially, we use
an MCMC to extract albedo maps and planet spin and
their uncertainties, whereas they used optimization to
determine best-fit parameters. Also, we use Gaussian
Processes to enforce smooth maps rather than Tikhonov
Regularization. The latter has a tunable regularization
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Fig. 2.— Simulated light curve and resulting fit from an Earth analog with 0 degree (face-on) inclination and 90 degree obliquity. The
simulated data and measurement errors are shown in the five insets, representing five epochs, each lasting one rotation, collected over
the course of a year with a one hour cadence. The shaded region in each inset shows the central 90% posterior credible interval for the
reconstructed light curve.
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Fig. 3.— Posterior samples (black) compared to true (red) values
for the planet’s spin orientation, parameterized here as obliquity
and an azimuthal angle φ. The retrieved spin orientation has an
uncertainty of ∼2◦ and is consistent with the injected value of 90◦

and 10◦.

parameter, λ, which is chosen based on the “L-curve cri-
terion”. By contrast, Gaussian Processes uses the data
to fit for the characteristic length scale of the map.

Although this was a useful numerical experiment, we
made many simplifying assumptions, all of which should
eventually be relaxed in future efforts. exocartographer
is a solid platform on which to build more sophisticated
mapping capabilities. We now discuss possible improve-
ments, starting with relatively straightforward consider-
ations and ending with more challenging improvements.

4.1. Low-Hanging Fruit

Our assumed photometric uncertainty of 1% for one
hour integrations is at the optimistic end of what
LUVOIR might achieve for nearby targets (∼10 pc).
Nonetheless, smaller telescope diameters might be able
to achieve comparable photometric precision for planets
somewhat larger than Earth that rotate more slowly. In
any case, larger photometric uncertainties will produce
larger parameter and map uncertainties, but in no way
stress the exocartographer platform.

We assumed a known rotational period for the planet,
whereas in practice this would have to be extracted from
the data themselves. Previous efforts have shown that
this can be done independently of exo-cartography (e.g.,
by computing the auto-correlation function of the time-

resolved photometry; Pallé et al. 2008; Oakley & Cash
2009). It is unlikely that an MCMC initialized near the
correct rotational period will jump to one of its harmon-
ics, unless the time sampling is very poor, in which case
planet mapping is hopeless.

By forcing the albedo to be between 0 and 1, we have
implicitly assumed that the planetary radius is known.
In reality, the radii of directly imaged planets will not
be known. Allowing for unknown planetary radius effec-
tively removes the A ≤ 1 constraint: is the planet very
reflective or simply very big? Even in that case there
is a physical limit to the size of planets, roughly that of
Jupiter. The A > 0 constraint would be unaffected by an
unknown radius: flux cannot be negative, regardless of
planet size. For the particular retrieval excercise we have
performed, the albedo of cloudless Earth is quite low, so
we expect that our results would be robust to within a
scale factor; we wouldn’t know the absolute albedo of
the Sahara, merely that it is some factor greater than
the planetary mean.

The face-on geometry is favorable for mapping because
the planet is never inside the coronagraph/starshade in-
ner working angle, provided it is visible at all. But since
we only considered five epochs for our analysis, consid-
ering different orbital inclinations should not present a
significant challenge. That said, considering more, or
longer, epochs would increase the number of data, hence
increasing the computational burden but ultimately im-
proving the quality of the maps and geometrical con-
straints.

The 90◦ obliquity of the planet facilitated our task in
two ways: all latitudes receive significant sunlight at one
or more orbital phases, and all latitudes are visible to the
observer. The combination of these two factors mean
that we can, in principle, map the entire planet. For
different viewing geometries we would only be able to
map certain latitudes (e.g., an observer at 45◦ north can-
not map locations below 45◦ south) and some latitudes
would be poorly constrained (for low obliquity planets,
the poles are poorly illuminated and hence hard to map,
even for a polar observer; Cowan et al. 2011).

4.2. Harder Nuts to Crack

We have assumed that the surface of the planet is a
non-uniform Lambertian reflector. In fact, real planets
are non-Lambertian, notably due to forward scattering
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from molecules and aerosols, as well as due to specu-
lar reflection by surface liquids (Robinson et al. 2010,
2014). In principle one could use a parametrized scatter-
ing phase function to fit for this behavior. Of course, the
parameters would be different for different surface types.
Although this would add a few model parameters, the
main challenge would be that forward model calls might
become more computationally expensive due to the non-
trivial convolution kernel.

Lastly, we have adopted a cloudless planet. To first
order, clouds are just another bright surface, and one
can differentiate between clouds and, say, continents with
multi-wavelength data—even two-broadbands can do the
trick (Cowan et al. 2009; Fujii & Kawahara 2012). But
clouds further complicate the mapping exercise in two
ways: they mask underlying surfaces, and they change
with time. One can make a map of surfaces and average
cloud cover (Fujii & Kawahara 2012), and cloud vari-
ability will show up as residual structured noise. In this
scheme, regions that are essentially always shrouded in
clouds, e.g., rain forests, are treated as if the clouds were
indeed glued to the surface.

Is there a better way to deal with clouds? The
very feature that makes clouds pernicious—their time-
variability—may also be their undoing: since most re-
gions are cloud-free, at least occasionally, then it may be
possible to construct a cloud-corrected map. This would
require multiple rotations at each epoch, the duration of
the observations must be greater than the characteris-
tic weather timescale on the planet, (e.g., a few days for

Earth; Peixoto & Oort 1992).
A possible strategy for dealing with both non-

Lambertian scattering and clouds is using multi-
wavelength data. In this manuscript we limited our-
selves to white-light photometry. Simultaneously ana-
lyzing multi-band data has the advantage that the maps
can look very different at different wavelengths, while the
geometrical parameters must be common (e.g., Fujii &
Kawahara 2012). One can even use the color variations
of the planet to identify the number and colors of sur-
faces, even if these are a priori unknown (Cowan & Strait
2013; Fujii et al. 2017).
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Vazquez, M. 2008, ApJ, 676, 1319
Peixoto, J. P., & Oort, A. H. 1992
Robinson, T. D. 2017, ArXiv e-prints, arXiv:1701.05205
Robinson, T. D., Ennico, K., Meadows, V. S., et al. 2014, ApJ,

787, 171
Robinson, T. D., Meadows, V. S., & Crisp, D. 2010, ApJ, 721, L67
Schlichting, H. E., & Sari, R. 2007, ApJ, 658, 593
Schwartz, J. C., Sekowski, C., Haggard, H. M., Pallé, E., &
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