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ABSTRACT
The disk-integrated reflected brightness of an exoplanet changes as a function of
time due to orbital and rotational motion coupled with an inhomogeneous albedo
map. We have previously derived analytic reflected lightcurves for spherical harmonic
albedo maps in the special case of a synchronously-rotating planet on an edge-on or-
bit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected
lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin
period and non-zero obliquity. We do so for two di↵erent albedo basis maps: bright
points (�-maps), and spherical harmonics (Y m

l -maps). In particular, we use Wigner
D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a
non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously
rotating geometry. These solutions will enable future exploration of the degenera-
cies and information content of reflected lightcurves, as well as fast calculation of
lightcurves for mapping exoplanets based on time-resolved photometry. To these ends
we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-
source code that allows rapid computation of reflected lightcurves.

1 INTRODUCTION

We would like to know what exoplanets look like, but they
are too distant to resolve with near-term telescopes. For-
tunately, the rotational and orbital motions of exoplanets
bring di↵erent features in and out of view—the resulting
changes in brightness and color betray the planet’s appear-
ance (for a review of exo-cartography, see Cowan & Fujii
2017). An exoplanet’s reflected light contribution to total
system brightness is of order 10�5 for a hot Jupiter. Measur-
ing these small contributions to the system flux is currently
feasible with the Kepler telescope. For an Earth-like planet
orbiting a Sun-like star, the contrast is ⇠ 10�9, and will
have to wait for future missions like HabEx and LUVOIR.

Ford et al. (2001) demonstrated that the brightness and
color variations of the proverbial “pale blue dot” encodes
information about surface and atmospheric features on the
planet. But the inverse problem—inferring planetary prop-
erties from disk-integrated photometry—is much tougher. It
took over a decade to solve isolated aspects of the problem:
establishing rotation frequency (Pallé et al. 2008; Oakley &
Cash 2009), rotational mapping (Cowan et al. 2009, 2011;
Fujii et al. 2011), spin-orbit mapping (Kawahara & Fujii
2010, 2011; Fujii & Kawahara 2012), and retrieval of indi-
vidual surface spectra (Fujii et al. 2010; Cowan & Strait
2013; Fujii et al. 2017).

In parallel, there have been theoretical and obser-
vational e↵orts to map the atmospheres of short-period

exoplanets, both in reflected light and thermal emission,
the latter being observationally and mathematically easier
(Williams et al. 2006; Rauscher et al. 2007; Knutson et al.
2007, 2012; Cowan & Agol 2008; Majeau et al. 2012; de
Wit et al. 2012; Cowan et al. 2013; Demory et al. 2013;
Cowan et al. 2017). The primary di↵erences between the di-
rect imaging and combined light approaches are that short-
period planets are expected to have zero obliquity and are
probably synchronously rotating, which makes the geometry
simpler (but see Leconte et al. 2015; Dang et al. 2018). In
this letter, we focus on the hardest version of the problem:
reflected light from a planet with arbitrary orbital inclina-
tion and spin.

In order to solve the inverse problem of exo-cartography,
it is helpful—if not necessary—to have a firm grasp of the
forward problem: calculating the brightness variations of a
planet given its surface inhomogeneities and viewing geom-
etry. A particularly useful approach to the forward problem
is to decompose the map using a set of orthonormal basis
maps for which one can analytically determine the result-
ing lightcurves (Figure 1). Doing this analytically makes it
easier to track down degeneracies and special cases. More-
over, it is necessary to adopt a parameterized map when
solving the inverse problem, and the simplest way to do so
is to have each of the map parameters correspond to a single
orthonormal-basis-component map.

Since planets are spherical, the basis maps of choice
are spherical harmonics and the resulting lightcurves are
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Figure 1. An arbitrary planetary albedo map (far left) can be decomposed into spherical harmonics (left), each of which has a geometry-
dependent harmonic lightcurve (right). The lightcurve of the arbitrary map (far right) is simply the sum of the harmonic lightcurves,
weighted by the coe�cients of the spherical harmonics. The colors of arrows denote the di�culty of the operation: decomposing a map into
spherical harmonics is simply integration, and the operation is unnecessary if the map is parameterized using spherical harmonics to begin
with. Combining weighted harmonic lightcurves to obtain the overall lightcurve is a simple matter of addition. The crux of the forward
problem is computing the harmonic lightcurves for a given viewing geometry (dashed arrows). The brute force approach is numerical
integration, but in this letter we analytically solve this transform. (Insets produced using ReflectDirect, created by J.C. Schwartz.)

called harmonic lightcurves. Alternatively, it is mathemati-
cally easy, and sometimes astronomically useful, to consider
discrete albedo markings, e.g., pixels. The limiting case of
infinitesimal pixels are �-functions. So in this letter we will
also consider maps consisting of a uniformly dark planet
with a single bright point, which we call �-maps.

Russell (1906) derived analytic reflected lightcurves for
asteroids with convex shapes observed at opposition (full
phase). The shape and albedo markings were parameterized
via spherical harmonics. Cowan, Fuentes & Haggard (2013;
henceforth CFH13) derived reflected harmonic lightcurves of
synchronously-rotating spherical planets on edge-on orbits.
That case is relevant to near-term goals such as albedo map-
ping of short period planets, but is a far cry from a general
solution to the reflected light forward problem.

In this work, we derive general analytic solutions for
the reflected light from a spherical planet. We assume dif-
fuse reflection (i.e., Lambertian scattering), but our solu-
tions work regardless of orbital inclination, planetary obliq-
uity, or spin rate. The mathematical crux of deriving har-
monic lightcurves for arbitrary geometry is rotating from
the planetary coordinate system of the map to the coordi-
nate system centered on the lune-shaped convolution kernel
(Figure 3). Fortunately, rotations of spherical harmonics are
useful in other areas of Physics and are compactly described
by Wigner D-matrices. The bottom line is that we can ex-
press a harmonic lightcurve for an arbitrary viewing geome-
try as a non-linear combination of harmonic lightcurves for
the simpler viewing geometry presented in CFH13.

We have implemented the analytic results of this let-
ter in an open-source Mathematica code, the Exoplanet
Analytic Reflected Lightcurves package, EARL (https://
github.com/HalHaggard/EARL). EARL can be used as a
black box or as a white box and makes lightcurve numerical
experiments accessible.

In Section 2 we consider �-maps, which admit a math-

ematically trivial analytic lightcurve. Despite being a good
stand-in for small pixels, �-maps are an overcomplete basis,
and hence of limited use for solving inverse problems. In Sec-
tion 3 we therefore tackle the more useful—and mathemat-
ically challenging—case of harmonic lightcurves. The online
supplements A-D specify all the conventions one needs to
explicitly code our result and Appendices E and F compare
our analytic result to CFH13 and exhibit some useful har-
monic lightcurve properties, respectively.

2 THE SIMPLEST BASIS: �-MAPS

Arguably the simplest orthonormal basis maps are delta
functions: M(✓,�) = �(✓0�✓,�

0��)/ sin ✓0, where ✓

0 and �

0

are the usual co-latitude and longitude on the planet, and ✓

and � are the location of the bright point (the map is black
everywhere else).

Such maps have the desirable property that they are
easy to integrate so one can trivially compute the lightcurve
for a �-map. Using the standard spherical measure d⌦0 ⌘
sin ✓0d✓0d�0 this lightcurve is:

F

✓�

(t) =

I

K(✓0,�0
, t)

1
sin ✓0

�(✓0 � ✓,�

0 � �)d⌦0

=

Z

⇡

0

Z

2⇡

0

K(✓0,�0
, t)�(✓0 � ✓,�

0 � �)d✓0d�0

=K(✓,�, t).

(1)

In other words, the lightcurve for a �-function at location
(✓,�) is simply the changing value of the kernel at that lo-
cation. This is much faster to compute than numerically
integrating the varying flux from a small pixel.

In the case of reflected light from a Lambertian reflector,
the convolution kernel is the normalized product of visibility
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Figure 2. Left: Even at fixed orbital phase the �-maps exhibit a rich set of interactions with the illuminated and visible lune. The
five qualitatively distinct interactions are depicted in this figure for a fixed relative position of planet and lune poles. A �-map at small
colatitude remains within the lune throughout the rotation (solid). At middling colatitudes the spot exits and returns through one side
of the lune (dot-dashed) or exits and returns through both sides of the lune (short dash). At still larger colatitudes the spot traverses
the lune once (long dash). Finally, for colatitudes larger than that of the lune south pole the spot map is outside the lune for the whole
rotation and gives no lightcurve, putting it in the nullspace. Right: Example lightcurves for 4 spots at the same planetary longitude but
di↵erent latitudes, which pass through the kernel as shown in the left panel.

and illumination:

K(✓,�, t) =
1
⇡

max
�

V

nz

(✓,�, t), 0
�

·max
�

I

nz

(✓,�, t), 0
�

;

(2)
the non-zero regions of the visibility and illumination are:

V

nz

(✓,�, t) = sin ✓ sin ✓
o

cos(�� �

o

) + cos ✓ cos ✓
o

, (3)

I

nz

(✓,�, t) = sin ✓ sin ✓
s

cos(�� �

s

) + cos ✓ cos ✓
s

. (4)

In Schwartz et al. (2016) we worked out the full time-
dependence of the subobserver and substeller points as func-
tions of the viewing and orbital geometries. We provide a
simplified derivation of these results in Appendix D. Sub-
stituting these results into Eqs. (1-4), one obtains the ex-
plicit time-dependence for the kernel at a given location,
or—equivalently—the lightcurve for a delta function at that
location.

In Figure 2 we use �-maps to explore the di↵erent
lightcurve morphologies. As described in detail below, the
non-zero portion of the kernel forms a geometrical lune. The
image on the left of Figure 2 is centered on a lune, with the
star is to the right, and the observer is to the left. Depend-
ing on the location of the bright spot, there are four classes
of behavior (excluding spots that don’t rotate through the
lune, which are in the nullspace).

The polar spot in Figure 2 (the top panel on the right) is
continuously illuminated and visible: the flux from the spot
never drops to zero during the plotted interval, but varies pe-
riodically. The second panel shows a spot somewhat farther
from the pole. At the start of the plotted interval, the spot
remains within the lune throughout a planetary rotation but
passes through a local maximum twice per rotation, hence
the lightcurve exhibits a double-peaked morphology. As the
lune moves with respect to the planetary pole, this spot pe-
riodically leaves the lune. The third panel shows a spot at
mid-latitudes that passes in and out of the lune twice per

rotation. The fourth panel shows the lightcurve for a spot
close to the equator: it passes through the lune once per
rotation.

At a given orbital phase, the shape of the kernel is fixed,
as is its position with respect to the planetary axis of rota-
tion, so the contribution of a region to rotational variability
is solely determined by the latitude of that location. But as
the planet moves in its orbit, the shape and location of the
kernel changes, and hence the lightcurve contribution from
a given latitude can change character (continuously visible,
double-peaked, single peaked, etc.). Lastly, note that due
to the angle between the lune and the planetary coordi-
nates, spots at the same longitude can contribute to the
lightcurve at di↵erent rotational phases. The bottom line
is that even the simplest albedo maps produce surprisingly
varied lightcurves.

3 HARMONIC LIGHTCURVES

In this section we give a full analytic solution to the problem
of finding the lightcurve for a planet described by a spherical
harmonic albedo map with an arbitrary viewing geometry.
As noted by CFH13, the map-to-lightcurve transformation
is essentially a convolution, and the crux is that the kernel
is piecewise-defined. The non-zero part of the integral has
limits related to the viewing geometry. These limits are usu-
ally awkward: they do not correspond to constant latitude
or longitude.

However, there is always a coordinate system based on
the terminator and the limb where the integral kernel—or
equivalently the limits of integration—are as simple as pos-
sible. We call this system lune coordinates and describe how
to transform from the planet-based to lune coordinates in
subsection 3.1. Subsection 3.2 then uses the rotation prop-
erties of spherical harmonics to derive the lightcurve of an
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Figure 3. Left: No matter where the subobserver (SOP) and substellar (SSP) points fall on the planet, they define two great circles on
the planet: the limb defines the boundary of the visible portion of the planet and the terminator defines the boundary of the illuminated
portion. The region that is both visible and illuminated cuts out a wedge, a geometrical lune, on the planet and our lune coordinates
are defined using this observable lune. The north pole (NP) generates a third great circle, the planetary equator. Right: Rotation from
the planet coordinates to the lune coordinates, illustrated in this figure, is the key step in being able to find an analytic solution to the
forward problem for harmonic lightcurves. Lune coordinates use a co-latitude ✓

l

, which descends from the north pole of the lune and a
longitude �

l

with prime meridian set by the terminator. The angular width w of the terminator-to-limb lune is a fundamental parameter
in our analysis.

arbitrary spherical harmonic map in complete generality. In
Appendix F we show that harmonic lightcurves have a sym-
metry similar to that of the spherical harmonics and derive
a new recursion relation for them; using these symmetries
allows substantial simplification in the computation of the
full set of harmonic lightcurves.

3.1 Lune Geometry

The general result presented here is based on the use of two
di↵erent coordinates systems: one is the standard planetary
coordinate system and is fixed by the rotation axis of the
planet, the second is a coordinate system adapted to the
instantaneous illumination and visibility of the planet (see
Fig. 3, left and right panels respectively). We will call the
latter system lune coordinates, as it is in this coordinate
system that the integral kernel is most simply expressed as
a lune cut out by two great circles. Here we establish a few
conventions about the lune coordinates and find the trans-
formation from the planetary coordinates to the lune ones.

The Cartesian coordinates of the subobserver and sub-
stellar points in the planet coordinates are defined by:

n̂

o

= (sin ✓
o

cos�
o

, sin ✓
o

sin�
o

, cos ✓
o

),

n̂

s

= (sin ✓
s

cos�
s

, sin ✓
s

sin�
s

, cos ✓
s

).
(5)

These two points provide the poles for the great circles that
determine the limb and terminator, respectively (Fig. 3).

The main issue of convention is that we need to fix an
analog of the north pole for lune coordinates. The north
pole of the planetary system is set by the axis of rotation
and the right hand rule. We define the north pole of the lune

coordinates as

ẑ

l

=
n̂

o

⇥ n̂

s

sin(⇡ � w)
=

n̂

o

⇥ n̂

s

sinw
, (6)

and call it the lune pole. Here w is the angular width of the
kernel; an explicit formula for it, in terms of the subobserver
and substeller points, is given below. If we further fix the
prime meridian of the lune coordinates to coincide with the
terminator, then we can complete this north pole to a full
Cartesian coordinate frame with ŷ

l

= n̂

s

and x̂

l

= ŷ

l

⇥ẑ

l

. An
advantage of these choices is that the lune coordinates are
only ill-defined when the substellar and subobserver points
coincide or are antipodal, but both of these situations cor-
respond to syzygy (either the planet transiting its star or
being occulted by it) and are observationally uninteresting
for the reflected lightcurve.

Having specified the two coordinate frames it is now a
simple matter to find the Euler angles that specify the rota-
tion from one system to the other (the superscripts indicate
which components of the unit vectors are used):

tan↵ =
ẑ

(2)

l

ẑ

(1)

l

=
cos ✓

o

sin ✓
s

cos�
s

� cos ✓
s

sin ✓
o

cos�
o

cos ✓
s

sin ✓
o

sin�
o

� cos ✓
o

sin ✓
s

sin�
s

,

cos� = ẑ

(3)

l

=
sin ✓

o

sin ✓
s

sin(�
s

� �

o

)
sinw

,

tan � =
ŷ

(3)

l

�x̂

(3)

l

= � cos ✓
s

sinw
cos ✓

o

+ cos ✓
s

cosw
,

(7)
and their ranges are ↵ 2 [0, 2⇡], � 2 [0,⇡], and � 2 [0, 2⇡],
respectively. In numerical treatments the atan2 (y, x) func-
tion should be used to extract ↵ and �. Note carefully that
we use proper Euler angles and a z-y0-z00 intrinsic rotation
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convention. These Euler angles are crucial to the analytic
solution given below where they provide the arguments of
the WignerD-matrices connecting the general spherical har-
monics to the ones in the particularly simple lune geometry.

The width of the kernel can also be written in terms of
the subobserver and substellar points

cos(⇡ � w) = cos ✓
o

cos ✓
s

+ sin ✓
o

sin ✓
s

cos(�
s

� �

o

), (8)

which follows from the spherical law of cosines. The width
takes values in the range w 2 [0,⇡] and so here the cosine is
su�cient.

We conclude this section commenting on the case of
thermal light. In CFH13 the case of arbitrary thermal har-
monic lightcurves was reduced to a set of integrals that was
particularly tractable and several of the low order harmonic
lightcurves were tabulated. However, no general analytic so-
lution to these integrals was found. The methods used in this
letter—namely rotating spherical harmonics—can easily be
adapted to the case of thermal light as well.

3.2 The Result

A natural set of basis maps for planets are spherical harmon-
ics, Y m

l

(see Appendix B for the normalization and phase
conventions used in EARL). Here we have included the
Condon-Shortley phase, (�1)m, and used complex spheri-
cal harmonics. This is consistent with a number of modern
works in astrophysics and largely agrees with the default
options in software packages, such as Python and Mathe-
matica. This is however a di↵erent convention than in our
previous works (CFH13; Schwartz et al. 2016). Appendix
B1 details how to recover the real conventions without the
Condon-Shortley phase if needed.

Each spherical harmonic has a lightcurve signature
called a harmonic lightcurve,

F

m

l

=

I

K(✓0,�0
,G)Y m

l

(✓0,�0)d⌦0
, (9)

here the integral is over planet coordinates. A harmonic
lightcurve can also be thought of as the time-varying compo-
nents of the integral kernel in the spherical harmonic basis.
Despite the fact that this integral is taken over the whole
sphere, the result is complicated by the intricate piecewise
definition of the integral kernel, Eqs. (2)-(4), in the planet’s
coordinate system due to the viewing geometry G.

We take advantage of the transformation properties of
spherical harmonics to simplify this integral. Under a rota-
tion R—characterized by the Euler angles ↵, �, and �—from
the planet coordinates to the lune coordinates, we have

Y

m

l

(✓0,�0) =
l

X

m

0
=�l

h

D

(l)

mm

0(R)
i⇤

Y

m

0
l

(✓,�). (10)

Here D

(l)

mm

0(R) = D

(l)

mm

0(↵,�, �) is Wigner’s D-matrix
(Wigner 1927). Substituting this expression into Eq. (9) and
exchanging the order of integration and summation gives

F

m

l

=
l

X

m

0
=�l

h

D

(l)

mm

0(R)
i⇤

I

K(✓,�,G
0

)Y m

0
l

(✓,�)d⌦, (11)

where G
0

indicates the lune geometry and we have used the
fact that the angular measure d⌦ is rotationally invariant.

In the lune geometry, where the prime meridian is
aligned with the terminator, the kernel vanishes everywhere
except for lune longitudes � 2 (0, w). Within that range, the
kernel is non-zero and takes the simplified form

K

nz

(✓,�,G
0

) =
1
⇡

sin2

✓ sin� sin(w � �). (12)

The product form of the kernel allows us to separate the in-
tegral into two pieces depending on ✓ and � separately. Be-
cause the associated Legendre polynomial depends directly
on cos ✓ it is convenient to change the integral over the co-
latitude to x = cos ✓. Then

I

K(✓,�,G
0

)Y m

0
l

(✓,�)d⌦ = Pm

0
l

�
m

0(w) (13)

where

Pm

0
l

⌘ (�1)m

⇡

s

(2l + 1)
4⇡

(l �m

0)!
(l +m

0)!

Z

1

�1

(1� x

2)Pm

0
l

(x)dx,

(14)
and

�
m

0(w) ⌘
Z

w

0

sin� sin(w � �)eim
0
�

d�. (15)

The integral of Eq. (14) gives an l- and m

0-dependent num-

ber Pm

0
l

that can be found explicitly using recurrence prop-
erties of the associated Legendre polynomials, see Appendix
B. Note that we include the Condon-Shortley phase, (�1)m,
in our convention and make it explicit rather than includ-
ing it in the definition of the Legendre polynomials. The
complete solution for the harmonic lightcurves is then

F

m

l

=
l

X

m

0
=�l

Pm

0
l

h

D

(l)

mm

0(R)
i⇤

�
m

0(w), (16)

where the integral �
m

0 , Eq. (15), can be solved explicitly,
yielding

�
m

0(w) =

8

>

>

>

<

>

>

>

:

1

2

(sinw � w cosw) m

0 = 0

1

4

e

±iw(w � cosw sinw) m

0 = ±2

2i cosw(1�e

im

0
w

)�m

0
sinw(1+e

im

0
w

)

m

0
(m

02�4)

else.

(17)
Note that the summation in Eq. (16) really only extends over

half of the m

0 values because the coe�cients Pm

0
l

vanish
when l +m

0 is odd. Equation (16), together with (7), (17),
and (B10), gives a complete analytic formula for an arbitrary
harmonic lightcurve.

The analytic result Eq. (16) has passed every analytic
and numerical test we have put to it. This includes full agree-
ment with all of the tabulated lightcurves of CFH13 and
perfect agreement with the tidally-locked inclined harmonic
lightcurves that were numerically computed in that paper.
For a number of explicit examples see Appendix E.
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Figure 1. This figure sets out conventions and angle relations for the rich geometry of an exoplanet on a circular orbit around a distant
star. The upper left panel lays out the viewing geometry. The lower left panel gives the orbital geometry. The insets (a)-(d) of the right
panel give the spherical angle relations amongst the various angles.

APPENDIX A: VIEWING AND ORBITAL GEOMETRIES

Here we summarize our conventions for the viewing and orbital geometries of a planet on a circular orbit about a distant
star. The subobserver longitude �

o

(t) and the substellar angles ✓
s

(t) and �

s

(t) vary in time. Schwartz et al. (2016) presented
analytic expressions for these quantities as a function of seven system parameters, which we describe presently. We display
the results and provide a new and more intuitive derivation in Appendix D. Analytic expressions for the three time varying
angles allow us to first find the harmonic lightcurves as functions of the subobserver and substellar points and only afterwards
substitute their explicit time dependence, a particularly simple way to proceed.

The first three system parameters are intrinsic to the system: rotational angular frequency, !
rot

2 (�1,1), orbital
angular frequency, !

orb

2 (0,1), and obliquity, ⇥ 2 [0,⇡/2]. Rotational frequency is measured in an inertial frame, where
positive values are prograde with respect to the orbital motion and negative denotes retrograde rotation (for comparison, the
rotational frequency of Earth is !�

rot

⇡ 2⇡/23.93 h�1). Two more parameters are extrinsic and di↵er for each observer: orbital
inclination, i 2 [0,⇡] where i = 0 is face-on and orbiting counterclockwise as seen by the observer, i = ⇡/2 is edge-on, and
i = ⇡ is face-on and orbiting clockwise, and solstice phase, ⇠

s

2 [0, 2⇡), which is the orbital angle between superior conjunction
and the maximum Northern excursion of the sub-stellar point (i.e., the orbital location of northern summer solstice). The
remaining parameters are initial conditions: the starting orbital position, ⇠(0) 2 [0, 2⇡), and the initial sub-observer longitude,
�

o

(0) 2 [0, 2⇡). We adopt—with no loss of generality—the initial conditions �

o

(0) = 0 and ⇠(0) = 0. As a result, the sub-
observer longitude and orbital location are simply given by �

o

= �!

rot

t and ⇠ = !

orb

t, respectively. Figure 1 shows these
parameters in two di↵erent views on the left and four di↵erent sets of relations between them in the insets on the right. The
analytic expression for the time-varying angles �

o

(t), ✓
s

(t), and �

s

(t) are given in Eqs. (D1-D5).

APPENDIX B: SPHERICAL HARMONICS, LEGENDRE POLYNOMIALS, AND THEIR INTEGRALS

Despite the standard nature of the spherical harmonics, we find it useful to explicitly display some low order spherical
harmonics; this allows rapid comparison of phase and normalization conventions, see Table B1. The spherical harmonics are

Y

m

l

(✓,�) = (�1)m
s

(2l + 1)
4⇡

(l �m)!
(l +m)!

P

lm

(cos ✓)eim�

, (B1)

where P

lm

denotes the associated Legendre polynomial and we have made the Condon-Shortley phase, (�1)m, explicit. Note
carefully that this phase is often incorporated in the definition of the Legendre polynomials, e.g. in Mathematica, and should
not be included twice.
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l m

0 Y 0

0

= 1

2

p
⇡

1 Y �1

1

= 1

2

q
3

2⇡

sin ✓e�i� Y 0

1

= 1

2

q
3

⇡

cos ✓ Y 1

1

= � 1

2

q
3

2⇡

sin ✓ei�

2 Y �1

2

= 1

2

q
15

2⇡

sin ✓ cos ✓e�i� Y 0

2

= 1

4

q
5

⇡

(3 cos2 ✓ � 1) Y 1

2

= � 1

2

q
15

2⇡

sin ✓ cos ✓ei�

Y �2

2

= 1

4

q
15

2⇡

sin2 ✓e�i2� Y 2

2

= 1

4

q
15

2⇡

sin2 ✓ei2�

Table B1. The low order spherical harmonics for l 2 {0, 1, 2}. We adopt the conventions most often used in quantum mechanics. That is,
we use complex spherical harmonics that are orthonormal with respect to the standard spherical measure, include the Condon-Shortley
phase, and adopt colatitude as our ✓ coordinate.

B1 Real and Complex Conventions for Spherical Harmonics and Harmonic Lightcurves

In CFH13 we used conventions akin to those in geodesy with a real basis of spherical harmonics and did not include the
Condon-Shortley phase. Thus in CFH13 the real spherical harmonics Ỹ m

l

we used were:

Ỹ

m

l

=

(

N

m

l

P

lm

(cos ✓) cos(m�) if m > 0

N

|m|
l

P

l|m|(cos ✓) sin(|m|�) if m < 0
with N

m

l

=

8

>

<

>

:

1 if l = 0
s

2(2l + 1)(l �m)!
(l +m)!

if l > 0
. (B2)

That paper’s normalization convention was a bit unusual as it included a factor of
p
2 even for m = 0. Expressions for the

real spherical harmonics Ỹ m

l

in terms of of the complex ones used in this letter Y m

l

can be used to recover the CFH13 results
from those in this letter. As shown in Eqs. (F1) and (F2), the complex symmetries of the harmonic lightcurves are the same
as those of the spherical harmonics. For the reader’s ease we report the real harmonic lightcurves F̃m

l

in terms of the complex
ones, Fm

l

, presented in this letter. All real lightcurves are given in the conventions of CFH13, detailed just above:

F̃

m

l

=

8

>

<

>

:

(�1)m
p
2⇡

⇥

F

m

l

+ (�1)mF

�m

l

⇤

if m > 0 and l > 0,
p
4⇡F 0

0

if m = 0 and l = 0,

�i

p
2⇡

⇥

(�1)mF

�m

l

� F

m

l

⇤

if m < 0.

(B3)

B2 Legendre Polynomial Recurrence Relation

Recurrence relations allow us to relate associated Legendre polynomials with di↵erent degrees and orders. Building o↵ of the
relations in DiDonato (1982) we obtain

p

1� x

2

P

m

l

=
1

2l + 1

⇥

P

m+1

l+1

� P

m+1

l�1

⇤

. (B4)

Note that DiDonato (1982) also does not include the Condon-Shortley phase in the definition of the associated Legendre
polynomials. The above equation, hence, di↵ers by a minus sign from Mathematica and other sources that use this phase,
however, the recursion relation below is una↵ected by this choice because it relates polynomials for which the m-indices di↵er
by two. Also, the appearance of the pair (l � 1,m+ 1) should inspire caution, however it does not present any di�culties as
P

m+1

l�1

simply vanishes when m+ 1 > l � 1 and the recurrence continues to hold. Iterating the recurrence (B4) we obtiain,

(1� x

2)Pm

l

=
1

4l2 � 1

✓

2l � 1
2l + 3

P

m+2

l+2

� 4l + 2
2l + 3

P

m+2

l

+ P

m+2

l�2

◆

. (B5)

B3 Definite Integrals of the associated Legendre polynomials on x 2 [�1, 1] and the coe�cients Pm

l

For the special case where the limits of integration are x 2 [�1, 1], compact solutions (i.e., not involving sums) for the definite
integral of the associated Legendre polynomials have been worked out by Jepsen et al. (1955):

R

m

l

⌘
Z

1

�1

P

lm

(x)dx =

8

>

>

>

>

>

<

>

>

>

>

>

:

2 if l = m = 0

R

m

l

(even) if l and m are even

R

m

l

(odd) if l and m are odd

0 if l +m is odd,

(B6)

where the R functions are

R

m

l

(even) ⌘ 2|m|[(l/2)!]2(l +m)!
l[(l �m)/2]![(l +m)/2]!(l + 1)!

,

R

m

l

(odd) ⌘ �⇡m(l +m)!(l + 1)!
l22l+1{[(l + 1)/2]!}2[(l �m)/2]![(l +m)/2]!

.

(B7)
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Physically, the northern and southern hemispheres have perfectly canceling lightcurves in the fourth case.
Jepsen et al. (1955) do not explicitly treat the case of m < 0, so we check directly

R

�m

l

⌘
Z

1

�1

P

l�m

(x)dx =

Z

1

�1

(�1)m
(l �m)!
(l +m)!

P

lm

(x)dx = (�1)m
(l �m)!
(l +m)!

R

m

l

. (B8)

This shows that we can put �m into the Eqs. (B7) and get the correct answer. The sign (�1)m in this formula is independent
of the Condon-Shortley phase and comes only from the Rodrigues’ formula for the associated Legendre polynomials.

The coe�cients Pm

l

appearing in our main result, Eq. (16), are defined by

Pm

l

⌘ (�1)m

⇡

s

(2l + 1)
4⇡

(l �m

0)!
(l +m

0)!

Z

1

�1

(1� x

2)Pm

0
l

(x)dx. (B9)

Using the recurrence (B5) and the results for the total integrals of the Legendre polynomials, we find that these coe�cients
can be expressed as

Pm

l

=

8

>

>

>

>

<

>

>

>

>

:

1

⇡(4l

2�1)

q

(2l+1)(l�m)!

(l+m)!

⇣

2l�1

2l+3

R

m+2

l+2

� 4l+2

(2l+3)

R

m+2

l

+R

m+2

l�2

⌘

m 6 l � 4,

1

⇡(4l

2�1)

q

(2l+1)(l�m)!

(l+m)!

⇣

2l�1

2l+3

R

m+2

l+2

� 4l+2

(2l+3)

R

m+2

l

⌘

l � 4 < m 6 l � 2,

1

⇡(4l

2�1)

q

(2l+1)(l�m)!

(l+m)!

⇣

2l�1

2l+3

R

m+2

l+2

⌘

l � 2 < m 6 l.

(B10)

APPENDIX C: PHASE CONVENTION FOR THE D-MATRICES

Our phase convention for the D-matrices is such that

D

(l)

mm

0(↵,�, �) = e

�i↵m

d

(l)

mm

0(�)e
�i�m

0
, (C1)

where d

(l)

mm

0 is the Wigner small d-matrix and is given by the single sum formula

d

(l)

mm

0(�) = (�1)l+m[(l +m)!(l �m)!(l +m

0)!(l �m

0)!]1/2
X

k

(�1)k
�

cos �

2

�

2k�m�m

0
�

sin �

2

�

2l+m+m

0�2k

k!(l +m� k)!(l +m

0 � k)!(k �m�m

0)!
, (C2)

as well as many other expressions. The summation index k takes all values such that the arguments of the factorials are
non-negative. Our conventions agree with Varshalovich et al. (1988), but di↵er from, for example, Mathematica, which uses
{↵,�, �} ! {�↵,��,��}. Again, we use proper Euler angles and a z-y0-z00 intrinsic rotation convention.

APPENDIX D: DERIVATION OF THE TIME-VARYING GEOMETRY

As discussed in Appendix A, it is simplest to first find the harmonic lightcurves as a function of the substellar and subobserver
points and only afterwards substitute the time dependence of these points to find the fully time-dependent lightcurve. Here we
present simplified derivations for the subobserver colatitude in terms of the parameters of the viewing and orbital geometry
and the explicit time dependence of �

o

(t) and the substellar angles ✓

s

(t) and �

s

(t). The resulting expressions are:1

cos ✓
o

= cos i cos⇥+ sin i sin⇥ cos ⇠
s

, sin ✓
o

=
p

1� cos2 ✓
o

, (D1)

cos�
o

= cos(!
rot

t), sin�
o

= � sin(!
rot

t), (D2)

cos ✓
s

= sin⇥ cos(!
orb

t� ⇠

s

), sin ✓
s

=
q

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

), (D3)

cos�
s

=
cos(!

rot

t)
h

sin i cos(!
orb

t)� cos ✓
o

sin⇥ cos(!
orb

t� ⇠

s

)
i

+ sin(!
rot

t)
h

sin i sin(!
orb

t) cos⇥� cos i sin⇥ sin(!
orb

t� ⇠

s

)
i

p

1� (cos i cos⇥+ sin i sin⇥ cos ⇠
s

)2
p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
,

(D4)

sin�
s

=
� sin(!

rot

t)
h

sin i cos(!
orb

t)� cos ✓
o

sin⇥ cos(!
orb

t� ⇠

s

)
i

+ cos(!
rot

t)
h

sin i sin(!
orb

t) cos⇥� cos i sin⇥ sin(!
orb

t� ⇠

s

)
i

p

1� (cos i cos⇥+ sin i sin⇥ cos ⇠
s

)2
p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
.

(D5)
In Schwartz et al. (2016) these results were arrived at using a series of rotations in an inertial frame. We rederive these

results here using a more intuitive and simplified argument. This intuitive argument su↵ers from a minor sign ambiguity that

1 There was an obvious typo in the expression for cos�
o

in Schwartz et al. (2016).
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10 H.M. Haggard and N.B. Cowan

we point out below; the energetic reader can confirm that we have selected the correct signs here by referring to the previous
argument in Schwartz et al. (2016).

The geometry is described, to within time-reversal, by three fixed vectors in an inertial frame: the orbital and spin angular
momentum vectors, ~!

orb

= !

orb

ẑ and ~!

rot

, and the vector towards the observer n̂

o

, see Figure 1. The angles between these
three vectors are the planetary obliquity, ⇥, the orbital inclination, i, and the sub-observer longitude ✓

o

. The angle between
the plane spanned by !̂

orb

and n̂

o

and that spanned by !̂

orb

and !̂

rot

is the solstice phase ⇠

s

, as illustrated in inset (a) of the
right panel of Figure 1. The equations (D1-D5) can all be derived by applying the spherical law of cosines to this configuration
and the variations of it involving n̂

s

displayed in the right panel of Figure 1. Applying the spherical law of cosines to inset (a)
gives equation (D1) and since ✓

o

is in the range [0,⇡], this is enough to uniquely fix the sign of sin(✓
o

) to that of equation (D1).
Equations (D2) follow immediately from our assumptions on the initial condition for the sub-observer longitude �

o

(0) = 0,
hence �

o

= �!

rot

t. The equations for the sub-stellar colatitude (D3) follow from applying the spherical law of cosines to inset
(d) and noting that ⇠ = !

orb

t. The last two equations for the sub-stellar longitude (D4-D5) are more complicated, but can
still be reached in a few lines.

A simple route to equation (D4) is to rewrite

cos(�
s

) = cos(�
o

+ �

s

� �

o

) = cos(�
o

) cos(�
s

� �

o

)� sin(�
o

) sin(�
s

� �

o

). (D6)

Now we use inset (b) of the right panel of Figure 1 to find the relation

cos(�
s

� �

o

) =
cos(⇡ � w)� cos ✓

o

cos ✓
s

sin ✓
o

sin ✓
s

, (D7)

again by the spherical law of cosines. Furthermore, from inset (c) we have

cos(⇡ � w) = sin i cos ⇠ = sin i cos(!
orb

t). (D8)

Plugging this result and equations (D1) and (D3) into (D7) then gives

cos(�
s

� �

o

) =
sin i cos(!

orb

t)� cos ✓
o

sin⇥ cos(!
orb

t� ⇠

s

)
p

1� (cos i cos⇥+ sin i sin⇥ cos ⇠
s

)2
p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
. (D9)

Returning to equation (D7) we can also compute the sine of the di↵erence in longitudes

sin(�
s

� �

o

) =

s

1�
✓

cos(⇡ � w)� cos ✓
o

cos ✓
s

sin ✓
o

sin ✓
s

◆

2

=

p

1� cos2 ✓
o

� cos2 ✓
s

� cos2(⇡ � w) + 2 cos ✓
o

cos ✓
s

cos(⇡ � w)

sin ✓
o

sin ✓
s

.

(D10)
Once again using (D8), (D1), and (D3) the numerator of this equation turns out to be a perfect square and we have

sin(�
s

� �

o

) =
sin i sin(!

orb

t) cos⇥� cos i sin⇥ sin(!
orb

t� ⇠

s

)
p

1� (cos i cos⇥+ sin i sin⇥ cos ⇠
s

)2
p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
. (D11)

Inserting the results (D9) and (D11) into (D7) and using cos�
o

= cos(!
rot

t) and sin�
o

= � sin(!
rot

t) completes the derivation
and gives (D4). The derivation for (D5) proceeds along almost identical lines. The sign ambiguity inherent in this derivation
is due to the choice of sign whenever square roots are used. The signs chosen in the formulas reproduce the argument of
Schwartz et al. (2016), which is not subject to any such ambiguity.

By making pairs of vectors parallel or orthogonal (setting the above angles to 0 or ⇡/2), we arrive at 6 special cases:
edge-on orbit (i = ⇡/2), face-on orbit (i = 0), pole-on observer (✓

o

= 0), equatorial observer (✓
o

= ⇡/2), zero-obliquity
(⇥ = 0), Cassini state (⇥ = ⇡/2). The substellar longitude is by far the ugliest expression in the general case, and the only
way to significantly simplify it is by setting the planetary obliquity to zero.

One can combine various of the above cases (e.g., zero obliquity planet on edge-on orbit) to obtain yet simpler expressions.
Finally, one can make various special cases and approximations regarding the two frequencies, !

rot

and !

orb

, such as assuming
that orbital motion is slow compared to the timescale of observations. These limits are easier to compute and can be used
to explore the lightcurve signatures of �-maps. In the next few subsections we detail these special cases. We only report
expressions that di↵er from the general case.

D1 Orbital Inclination

For an edge-on orbit, i = ⇡/2, the sub-observer co-latitude is cos ✓
o

= sin⇥ cos ⇠
s

, with concomitant changes in the sub-stellar
longitude:

cos�
s

=
cos(!

rot

t)
n

cos(!
orb

t)� cos ✓
o

sin⇥ cos [!
orb

t� ⇠

s

]
o

+ sin(!
rot

t) sin(!
orb

t) cos⇥

sin ✓
o

p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
, (D12)

sin�
s

=
� sin(!

rot

t)
n

cos(!
orb

t)� cos ✓
o

sin⇥ cos [!
orb

t� ⇠

s

]
o

+ cos(!
rot

t) sin(!
orb

t) cos⇥}

sin ✓
o

p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
. (D13)
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For a face-on orbit, i = 0, the sub-observer co-latitude is cos ✓
o

= cos⇥, and the sub-stellar latitude simplifies to:

cos�
s

=
� cos(!

rot

t) cos⇥ cos [!
orb

t� ⇠

s

]� sin(!
rot

t) sin [!
orb

t� ⇠

s

]
p

1� sin2 ⇥ cos2 [!
orb

t� ⇠

s

]
, (D14)

sin�
s

=
sin(!

rot

t) cos⇥ cos [!
orb

t� ⇠

s

]� cos(!
rot

t) sin [!
orb

t� ⇠

s

]
p

1� sin2 ⇥ cos2 [!
orb

t� ⇠

s

]
. (D15)

D2 Subobserver Latitude

The pole-on observer, ✓

o

= 0 or ✓

o

= ⇡, is a special case and cannot be obtained as a limit of the above expressions.
Nonetheless, expressions for the various angles were derived in Schwartz et al. (2016): Case 1: The sub-stellar point will not

pass over the poles during orbit:

cos�
s

=
cos!

rot

cos ⇠ cos⇥+ sin!
rot

sin ⇠
p

1� sin2 ⇥ cos2 [⇠ � ⇠

s

]
, and sin�

s

=
� sin!

rot

cos ⇠ cos⇥+ cos!
rot

sin ⇠
p

1� sin2 ⇥ cos2 [⇠ � ⇠

s

]
. (D16)

Case 2: The sub-stellar point will pass over the poles during orbit:

cos�
s

=
� sin!

rot

sin ⇠ cos ⇠
s

p

1� sin2 ⇥ cos2 [⇠ � ⇠

s

]
, and sin�

s

=
� cos!

rot

sin ⇠ cos ⇠
s

p

1� sin2 ⇥ cos2 [⇠ � ⇠

s

]
. (D17)

An equatorial observer, ✓
o

= ⇡/2, leads to the following expressions:

cos�
s

=
cos(!

rot

t)
n

sin i cos(!
orb

t)
o

+ sin(!
rot

t)
n

sin i sin(!
orb

t) cos⇥� cos i sin⇥ sin(!
orb

t� ⇠

s

)
o

p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
, (D18)

sin�
s

=
� sin(!

rot

t)
n

sin i cos(!
orb

t)
o

+ cos(!
rot

t)
n

sin i sin(!
orb

t) cos⇥� cos i sin⇥ sin(!
orb

t� ⇠

s

)
o

p

1� sin2 ⇥ cos2(!
orb

t� ⇠

s

)
. (D19)

D3 Planetary Obliquity

If the planet has zero obliquity, ⇥ = 0, then ✓

o

= i, ✓

s

= ⇡/2, and �

s

= (!
orb

� !

rot

)t. With these relations we have
cos ✓

o

= cos i, cos ✓
s

= 0, cos�
s

= cos[(!
orb

� !

rot

)t], and sin�
s

= sin[(!
orb

� !

rot

)t].
If the planet has a ninety degree obliquity, ⇥ = ⇡/2, then

cos ✓
o

= sin i sin⇥ cos ⇠
s

, and sin ✓
o

=
p

1� cos2 ✓
o

, (D20)

cos ✓
s

= cos(!
orb

t� ⇠

s

), and sin ✓
s

= sin(!
orb

t� ⇠

s

), (D21)

cos�
s

=
cos(!

rot

t)
h

sin i cos(!
orb

t)� cos ✓
o

cos(!
orb

t� ⇠

s

)
i

� sin(!
rot

t) cos i sin(!
orb

t� ⇠

s

)
p

1� sin2

i cos2 ⇠
s

sin(!
orb

t� ⇠

s

)
, (D22)

sin�
s

=
� sin(!

rot

t)
h

sin i cos(!
orb

t)� cos ✓
o

cos(!
orb

t� ⇠

s

)
i

� cos(!
rot

t) cos i sin(!
orb

t� ⇠

s

)
p

1� sin2

i cos2 ⇠
s

sin(!
orb

t� ⇠

s

)
. (D23)

D4 Rotational and Orbital Frequencies

The synchronously rotating scenario is a subset of the zero-obliquity case. The orbital and rotational angular frequencies are
equal, !

orb

= !

rot

, so the the sub-stellar longitude is fixed, �
s

= 0.
If, instead, the planet’s orbital period is much greater than its rotational period, then !

orb

t ⇡ ⇠

0

. We may then define
the constant ⌅ ⌘ ⇠

0

� ⇠

s

, the sub-stellar co-latitude is constant, and all of the time-variability enters as !
rot

t:

cos ✓
s

= sin⇥ cos⌅, and sin ✓
s

=
p

1� sin2 ⇥ cos2 ⌅, (D24)

cos�
s

= cos(!
rot

t+ �

hr

), and sin�
s

= sin(!
rot

t+ �

hr

), (D25)

where the hour angle of the observer is

tan�
hr

=
cos i sin⇥ sin⌅� sin i sin(⇠

0

) cos⇥
sin i cos(⇠

0

)� cos ✓
o

sin⇥ cos⌅
. (D26)
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APPENDIX E: EXPLICIT ANALYTIC HARMONIC LIGHTCURVES: COMPARING PREVIOUS
WORK AND ILLUSTRATIVE EXAMPLES

In this Appendix we compare our analytic result to previous analytic and numerical results in CFH13 and list some explicit
examples of analytic lightcurves.

E1 Checking the Result

Once the right setup has been identified, the analytic derivation above involves few steps. Nonetheless, there are a number of
conventions that go into it and it is important to check the result of Eq. (16) against previous work.

We begin with the simple l = 0 case. In this case the Wigner D-matrix equals one, D(0)

00

= 1, independent of its arguments,
and the coe�cient is P0

0

= 2/3⇡3/2, so

F

0

0

=
1

3⇡3/2

(sinw � w cosw). (E1)

This is the canonical Lambert phase curve (Russell 1916), but expressed in terms of the lune width w. For an edge-on and
tidally locked orbit this lightcurve can be expressed in terms of the star–planet–observer phase angle, ' = ⇡ � w. Other
normalization conventions are also common and we describe the conversion to that of CFH13 in Appendix B.

E1.1 Edge-on and tidally locked orbit

The edge-on and tidally locked scenario nicely highlights a subtlety of the analytic formula (16). Without loss of generality we
can take the prime meridian of the planet coordinates to agree with the substellar longitude in this case, �

s

= 0. Simplifying
the formula for �, Eq. (7), using ✓

s

= ✓

o

= ⇡/2, �
s

= 0, and Eq. (8) we find

cos� = � sin�
o

/

q

sin2

�

o

= �sgn(�
o

), (E2)

where sgn (x) returns �1 if x is negative and +1 if x is positive. This means that it is essential to take �

o

2 [�⇡,⇡] and that
� is zero while the planet orbits from superior conjunction to inferior conjunction, but � = ⇡ while the planet orbits from
inferior to superior conjunction. This discontinuity is due to the fact that the lune pole discontinuously flips from the planet’s
North pole to its South pole at inferior conjunction as the limb and terminator pass through each other (and similarly at
superior conjunction). The analytic formulas capture this transition perfectly, but care is required in evaluating the edge-on,
tidally locked case. From superior conjunction to inferior one can use (↵,�, �) = (0, 0, 3⇡/2) and from inferior to superior
conjunction one can use (↵,�, �) = (0,⇡,⇡/2). Here we have arbitrarily resolved the gimbal lock ambiguity by putting all of
the z-axis rotation into �, but splitting it between � and ↵ or putting it all into ↵ are also valid choices.

With this subtlety noted, Eq. (16) gives lightcurves for the edge-on and tidally locked reflected light case in perfect
agreement with CFH13.2 Notice that in this case the rotation from the planet to the lune coordinates is constant except for at
inferior and superior conjunction, when the lune pole switches discontinuously: the prime meridian of the lune coordinates is
the day-night-terminator, which is stationary on a synchronously-rotating planet. This shows that all of the time-dependence
of the lightcurve except for a sign is due to the time-varying lune width w, a result present but not highlighted in CFH13.
The discontinuous changes of the lune pole also explain why so many of the edge-on and tidally locked lightcurves of CFH13
can be expressed in terms of the star-planet-observer phase angle ' = ⇡ � w alone.

E1.2 Tidally locked and inclined orbit

In the tidally locked and inclined case we can again take ✓
s

= ⇡/2 and �

s

= 0 and two of the Euler angles take on special values.

Evaluating Eq. (7) carefully using atan2 (y, x) yields ↵ = ⇡/2, � = ⇡, and cos� = � sin ✓
o

sin�
o

/

p

1� sin2

✓

o

cos2 �
o

. Using
these Euler angles in Eq. (16) we are able to reproduce the numerically computed inclined lightcurves of CFH13 analytically.
We have tabulated several of these new analytic lightcurves along with an example of an arbitrary viewing geometry lightcurve
in Appendix E.

E2 Tidally-locked and inclined analytic lightcurves

For a tidally-locked and inclined orbit we can choose the planet coordinates so that ✓

s

= ⇡/2 and �

s

= 0. The vanishing
obliquity allows simplification of the subobserver co-latitude

cos ✓
o

= cos i cos⇥+ sin i sin⇥ cos ⇠
s

= cos i, (E3)

2 There was a typo in CFH13: there F�2

2

should have been 2F�2

2

. We have confirmed this numerically as well.
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and this makes sense given our convention i 2 [0,⇡]. Using Eqs. (7) and (8) and taking care with their ranges, the Euler angles
and lune width take on the simple values ↵ = ⇡/2, � = ⇡,

cos� = � sin ✓
o

sin�
o

p

1� sin2

✓

o

cos2 �
o

, and cosw = � sin ✓
o

cos�
o

. (E4)

Putting these values in the general result Eq. (16), we tabulate several low-order harmonic lightcurves (we do not list lightcurves
with m < 0 since these can be found directly from the symmetry of Eq. (F1)):

F

0

1

(t) =
1
16

r

3
⇡

(1 + cos�
o

sin ✓
o

)| cos ✓
o

|, (E5)

F

1

1

(t) = � 1
16

r

3
2⇡

(1 + e

i�

o sin ✓
o

)(1 + cos�
o

sin ✓
o

), (E6)

F

0

2

(t) = � 1

6⇡
p
5⇡



2 arccos(� cos�
o

sin ✓
o

) cos�
o

sin ✓
o

+ (2� 3 cos2 ✓
o

)
q

1� cos2 �
o

sin2

✓

o

�

, (E7)

F

1

2

(t) = � 1

⇡

p
30⇡



arccos(� cos�
o

sin ✓
o

) + e

i�

o sin ✓
o

q

1� cos2 �
o

sin2

✓

o

�

| cos ✓
o

|, (E8)

F

2

2

(t) =
1

2⇡
p
30⇡



2ei�o arccos(� cos�
o

sin ✓
o

) sin ✓
o

+ (1 + e

2i�

o sin2

✓

o

)
q

1� cos2 �
o

sin2

✓

o

�

. (E9)

Equation (E3) allows us to identify ✓

o

= i, and so the time-dependence of these lightcurves can be made completely explicit
by substituting �

o

= �!

rot

t, as argued in Appendix D.

E3 A completely general analytic harmonic lightcurve and an illustrative recursion

Comparison with CFH13 alone does not display the full power of our main result because that paper never dealt with non-zero
obliquities. Here we illustrate the power of our main result with a completely general analytic lightcurve and discuss a subtlety.
The subtlety has do with limiting a general lightcurve to the special tidally locked geometry or to a second special geometry
discussed below. We have already seen, in Section E1, that these cases exhibit subtleties like gimbal lock and special values
of the arctan(x) function. If you are interested in a particular geometry where the Euler angles of Eq. (7) may take special
values, it is wise to take a look at these formulas by hand at first.

The first non-Lambertian lightcurve with an arbitrary viewing geometry and expressed in terms of the Euler angles and
lune width is

F

0

1

= �1
4

r

3
⇡

cos
⇣

w

2
+ �

⌘

sin3

w

2
sin�. (E10)

This can be rewritten in terms of the subobserver and substellar points

F

0

1

=
1
16

r

3
⇡

(cos ✓
o

+ cos ✓
s

)[1 + cos ✓
s

cos ✓
o

+ sin ✓
s

sin ✓
o

cos(�
s

� �

o

)], (E11)

and substituting the time dependence of the angles from Appendix D this reduces to the remarkably simple and unexpected
form

F

0

1

(t) =
1
16

r

3
⇡

[cos i cos⇥+ sin i sin⇥ cos ⇠
s

+ sin⇥ cos(!
orb

t� ⇠

s

)][1 + sin i cos(!
orb

t)]. (E12)

This equation makes the dependence of F 0

1

(t) on the orbital geometry completely explicit.
However, the attentive reader may balk at Eqs. (E11) and (E12) because in the zero obliquity limit, where ✓

s

= ⇡/2 and
�

s

= 0, they disagree with Eq. (E5); no | cos ✓
o

| appears in (E11) in this limit. The reason behind this observation highlights
the care needed in taking the limit. Technically the Euler angle � is given by

� = atan2 (cos ✓
s

,�cos ✓
o

+ cos ✓
s

cosw
sinw

) (E13)

where atan2 (y, x) = arctan(y/x) returns an angle in the full (�⇡,⇡] range given the components y and x. The arctangent
function has a branch cut, which can be taken along the negative x-axis, and hence is discontinuous whenever y = 0 and one
varies x from positive to negative values. In the present example, when ✓

s

= ⇡/2 the first argument of atan2 (y, x) vanishes
and � discontinuously jumps from ⇡ for a northern observer to 0 for a southern observer (note that sinw is always positive).
This change is exactly what accounts for the absolute values in Eq. (E5) and is completely absent at any other substellar
co-latitude.
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If a lightcurve depends on ↵, e.g. F 1

1

, then the analogous branch cut discontinuity needs to be taken into account. The
full definition of ↵ is

↵ = atan2 (cos ✓
o

sin ✓
s

cos�
s

� cos ✓
s

sin ✓
o

cos�
o

, cos ✓
s

sin ✓
o

sin�
o

� cos ✓
o

sin ✓
s

sin�
s

). (E14)

The branch cut discontinuity is again on the line where the first argument vanishes, that is, when

cos ✓
o

sin ✓
s

cos�
s

� cos ✓
s

sin ✓
o

cos�
o

= 0. (E15)

Geometrically this condition corresponds to the lune pole lying either on the planet’s prime meridian or on its 180th meridian.
When this is the case there is a discontinuity in ↵ whenever the lune pole passes through the planet’s North or South poles
(i.e. when cos ✓

s

sin ✓
o

sin�
o

�cos ✓
o

sin ✓
s

sin�
s

goes from positive to negative). This is the second special geometry mentioned
at the beginning of this section.

APPENDIX F: SYMMETRIES AND LIGHTCURVE RECURSION

The (complex) harmonic lightcurves have the simple symmetry property

F

�m

l

= (�1)m[Fm

l

]⇤. (F1)

This symmetry follows immediately from the definition, Eq. (9), and the symmetry, Y �m

l

= (�1)m[Y m

l

]⇤, of the spherical
harmonics:

F

�m

l

= (�1)m
I

K(✓0,�0
,G)[Y m

l

(✓0,�0)]⇤d⌦0

= (�1)m


I

K(✓0,�0
,G)Y m

l

(✓0,�0)d⌦0
�⇤

= (�1)m[Fm

l

]⇤.

(F2)

Hence it is only necessary to compute half of the lightcurves, say those with m > 0, and the others follow immediately.
The Wigner D-matrices also have extensive symmetries and satisfy recursion relations (for a detailed compendium see

Varshalovich et al. 1988). Intriguingly, almost all of these properties depend on both the m and m

0 indices. Because our
main result is a sum over m0, introducing new m

0-dependent terms makes it di�cult to do the sum explicitly and only a few
of these properties can be extended to the harmonic lightcurves. For example, the symmetry of Eq. (F1) can also be more
laboriously proved using the symmetries of the D-matrices. In the remainder of this section we derive a recursion relation for
the harmonic lightcurves using properties of the D-matrices. Whether further relations can be derived along these lines is an
interesting subject for future study.

A basic recursion relation for the D-matrices is

2m0 � 2m cos�
sin�

D

(l)

mm

0 = L�D
(l)

m�1m

0e
�i↵ + L

+

D

(l)

m+1m

0e
i↵

, (F3)

where the coe�cients are L± ⌘
p

(l ⌥m)(l ±m+ 1). Taking the complex conjugate of both sides of this recursion, multiplying

by Pm

0
l

�
m

0(w), summing over m0, and using the di↵erential relation

@

@�

D

(l)

mm

0 = �im

0
D

(l)

mm

0 , (F4)

we obtain the following di↵erential recursion relation for the harmonic lightcurves:
✓

�2i
sin�

@

@�

� 2m cot�

◆

F

m

l

= L�F
m�1

l

e

i↵ + L

+

F

m+1

l

e

�i↵

. (F5)

Because the result no longer involves a summation, this provides an e�cient strategy for obtaining all the harmonic lightcurves
with m < l from F

l

l

provided one is working analytically and can evaluate the derivative. Of course, the process is easily
automated in a framework like Mathematica.

We briefly illustrate this recursion. Using the main result, Eq. (16), we first compute F

1

1

F

1

1

= �1
8

r

3
2⇡

e

i↵ sin2

w

2

h

cos
⇣

w

2
� � + �

⌘

+ cos
⇣

w

2
+ � + �

⌘

+ 2i sin
⇣

w

2
+ �

⌘i

, (F6)

and then check
✓

�2i
sin�

@

@�

� 2 cot�

◆

F

1

1

= �1
4

r

6
⇡

cos
⇣

w

2
+ �

⌘

sin3

w

2
sin�ei↵ =

p
2F 0

1

e

i↵ (F7)

which is exactly Eq. (F5) with l = m = 1.
The derivation above requires the technical assumption that the � derivative of Eq. (F4) can be pulled outside of the

sum. Since the only thing that depends on � is the D-matrix this seems to be valid. However, since the Euler angles and the
width w all depend on the subobserver and substellar points, it could be that not all four quantities are independent and
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hence that the derivative cannot be taken at fixed w. We address this issue by showing that the Jacobian from {↵,�, �, w} to
{✓

s

,�

s

, ✓

o

,�

o

} is well behaved.
Using the expressions for the Euler angles and for the lune width in terms of the subobserver and substellar points, Eqs.

(7) and (8), we are able to find the Jacobian between these variables:

J ⌘ det
@(↵,�, �, w)

@(✓
s

,�

s

, ✓

o

,�

o

)
=

sin ✓
o

sin ✓
s

⇥

(1� cos2 ✓
s

cos2 ✓
o

)(cos2 ✓
s

+ cos2 ✓
o

� 2 cos2 ✓
s

cos2 ✓
o

) + j(✓
s

,�

s

, ✓

o

,�

o

)
⇤

sin2

w

⇥

sin2

w � sin2

✓

s

sin2

✓

o

sin2(�
s

� �

o

)
⇤

3/2

, (F8)

where the right hand side is only a function of {✓
s

,�

s

, ✓

o

,�

o

}, but we have used sinw and j(✓
s

,�

s

, ✓

o

,�

o

) as convenient
shorthands, use Eq. (8) to expand the first, and the second is defined by

j(✓
s

,�

s

, ✓

o

,�

o

) ⌘ 2 cos ✓
s

cos ✓
s

cos3(�
s

� �

o

) sin3

✓

s

sin3

✓

o

� cos2(�
s

� �

o

) sin2

✓

s

sin2

✓

o

(cos2 ✓
s

+ cos2 ✓
o

� 6 cos2 ✓
s

cos2 ✓
o

)

� 2 cos ✓
s

cos ✓
o

cos(�
s

� �

o

) sin ✓
s

sin ✓
o

(1 + cos2 ✓
s

+ cos2 ✓
o

� 3 cos2 ✓
s

cos2 ✓
o

).
(F9)

Except for when the subobserver or substellar points are at the North or South pole of the planet, the numerator only vanishes
at isolated points. This shows that the Euler angles {↵,�, �} and the lune width w are in general independent variables and
hence that we were justified in considering the partial derivative with respect to w at fixed values of ↵,�, and �. The recursion
relation arrived at in Eq. (F5) is rigorously correct whenever J 6= 0.
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