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Abstract

Prominent approaches to quantum gravity struggle when it comes to incorpo-
rating a positive cosmological constant in their models. Using quantization of a
complex SL(2,C) Chern-Simons theory we include a cosmological constant, of
either sign, into a model of quantum gravity.

The universe is accelerating in its expansion. The simplest consistent ex-
planation for the empirical data is a positive cosmological constant Λ = 10−52

m−2. A common expectation is that a quantum theory of gravity will shed light
on the surprising value of this constant [1, 2, 3] and on the interplay between
quantum fields and the bare value of Λ [4, 5]. A solid evaluation of this proposal
requires the inclusion of Λ into quantum gravity.

Prominent approaches to quantum gravity, such as the AdS/CFT frame-
work of string theory, covariant loop quantum gravity, and group field theories,
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struggle to incorporate a positive cosmological constant, if they are able to in-
corporate one at all. A few frameworks, like causal dynamical triangulations
and asymptotic safety, do not have this difficulty.

In this letter we present a novel model of four-dimensional Lorentzian quan-
tum gravity based on a discretized path integral over gravitational holonomy
variables where the cosmological constant emerges geometrically as a conse-
quence of our quantization procedure via complex Chern-Simons theory. In
particular, both signs of Λ are treated on an equal footing in the model.

Our discretization of the path integral decomposes spacetime into a simplicial
complex, with each simplex of constant curvature Λ. We choose to work with
parallel transports along closed paths (holonomies) as they are the most natural
gravitational observables. They also fit nicely with the use of constant curvature
simplices, whose geometry, as shown below, can be completely encoded in a finite
number of holonomies. From the Chern-Simons perspective, these holonomies
arise as the non-contractible cycles of a 3-manifold obtained by removing a
graph from the 3-skeleton of the simplicial complex.

Before delving into the details of the model, a few comments on discreteness,
symmetry, and the continuum limit. Discreteness is first introduced into the
model as a regularization tool, as in a lattice gauge theory. However, the lattice
will be dynamical and fluctuating in a quantum mechanical fashion. We show
below that, to avoid ambiguities in the model, the spectrum of the fluctuations
must have a Planck-scale discreteness and be gapped. Hence, the presence and
absence of a lattice site is also subject to quantum fluctuations. This is the
quantum ‘creation’ and ‘annhilation’ of the grains of spacetime.

Because of the quantum dynamical nature of these discrete grains, the prob-
lem of recovering general relativity in the continuum limit is intertwined with a
detailed understanding of their collective semiclassical behavior.

We do not treat the continuum limit here, however we provide evidence for
a connection with classical gravity. This is achieved by studying the small ~
asymptotics of the quantum amplitude of a single building block. In this limit,
we recover the exponential of the Einstein-Hilbert action (with the appropri-
ate Gibbons-Hawking-York boundary term) for a simplex of constant curvature
Λ. This is the curved Regge action of simplicial gravity. The bulk action

1
16πG

∫ √
−g(R − 2Λ) corresponds, on the simplicial side, to a term 1

8πGΛV ,
where V is the 4-volume of a Lorentzian and homogeneously curved 4-simplex.
Intriguingly, both the 4-volume and the boundary term are a result of the sta-
tionary phase evaluation of the Chern-Simons action subjected to appropriate
boundary conditions.

The use of curved, instead of flat, simplices as building blocks serves a twofold
dynamical purpose. Firstly, the interior of each building block is a solution of the
dynamical equations of gravity with a cosmological constant and, secondly, by
gluing a collection of these blocks one can build global solutions with the correct
continuum symmetries [6], that is, those of (A)dS. In this sense, these building
blocks are maximally adapted to the symmetries of the problem and, as such,
are promising for studying perturbations around a background that includes a
cosmological curvature—a potentially important technique for addressing the
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smallness of Λ.
A further consequence of using these building blocks is that their curvature Λ

enters as an infrared cutoff scale. Thus, in this model the cosmological constant
plays a dual role to the Planck area, the latter providing a natural ultraviolet
cutoff. Together these scales make the quantum theory of a fixed discretization
finite.

The model presented in this letter has a rich set of relations with other phys-
ical and mathematical theories. It can be seen as a generalization of the Turaev-
Viro [7], and hence Chern-Simons-Witten [8], quantization of three-dimensional
gravity. The physical picture draws heavily from loop gravity, especially in its
covariant, spinfoam version. On the other hand, the mathematical tools come
largely from the connections that Chern-Simons theory has with knot polyno-
mials and the volume conjecture. The idea of a relation between Chern-Simons
theory and four-dimensional loop gravity with a cosmological constant dates
back to the early days of these theories [9, 10, 11, 12, 13]. String theorists have
worked extensively on complex Chern-Simons theory and we see here potential
for exchange of ideas between loops and strings.

In particular, the holomorphic blocks that play a key role in defining the
present model have an M-theory interpretation, and closely relate to supersym-
metric gauge theory, as well as surface operators with junctions [14, 15, 16,
17, 18]. While not holographic in any standard sense our model does exhibit a
rich interplay between three- and four-dimensional topological and gravitational
theories (for recent work on this interplay in lower dimensions, see e.g. [19]).
We hope that recent advances in these active fields will accelerate progress in
quantum gravity, for example in treating the smallness and continuum limit
problems.

This rich set of connections has allowed us to bring a new set of tools to
bear on the analysis of the asymptotics of quantum gravity with a cosmological
constant. The use of complex Fenchel-Nielsen coordinates, holomophic blocks
and the Schläfli identity have significantly streamlined previous derivations of
these asymptotics, [20]. Consequently, this letter offers novel insights into why
the correct asymptotics are achieved, also illuminating previous results in the
absence of a cosmological constant, and opens several new avenues for inves-
tigation. Technical aspects of the derivation will be detailed in a forthcoming
publication [21].

Geometry from holonomies—Parallel transport along a Faraday-Wilson loop
of the gravitational field results in a holonomy that encodes aspects of the cur-
vature of the region bounded by the loop. Consider an homogeneously curved,
geodetic 4-simplex in an (A)dS space, and the set of holonomies along loops en-
circling the simplex’s faces. Choose these loops to share a common base point
and to be contained in the 1-skeleton of the simplex. Not all of these loops
are topologically independent and hence the holonomies are subject to a set of
algebraic constraints. Before displaying these constraints explicitly we find it
convenient to introduce a three-manifold M3 and move to a dual description of
the simplex. The manifold M3 is the boundary of the 4-simplex, triangulated
into 5 tetrahedra, with the Poincaré dual to this triangulation, Γ5, removed.
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Figure 1: A planar projection of the tubular neighborhood of the Γ5 graph with the set
of longitudinal and transverse paths used to calculate the parallel transports Gab and Ha(b),
respectively. The base points for all paths are chosen at each vertex, where the paths intersect,
and are the same for both the Gab and the Ha(b). For simplices, the Poincaré dual is also a
combinatorial simplex.

Recall that the Poincaré dual of a 4-simplex is a graph that associates a
vertex to each tetrahedron of the simplex and a graph edge to each pair of
neighboring tetrahedra. These edges pierce the shared faces of the paired tetra-
hedra and hence are dual to these faces. Pictorially one can think of this as
concentrating each of the faces on distributional defects (i.e. the edges of the
dual graph) living in a three-sphere S3 topologically equivalent to the boundary
of the 4-simplex. With this image in mind it is clear that there is an isomo-
morphism between the fundamental group of the simplicial 1-skeleton and that
of the graph-complement manifold M3 = S3 \N(Γ5), where N(Γ5) is the open
tubular neighborhood of the graph.

Therefore the loops used to calculate parallel transports are in 1-to-1 corre-
spondence with a set of equivalence classes of loops in the graph complement
M3. Associating the parallel transport holonomies to the corresponding equiv-
alence class of loops we obtain a representation of a flat connection in M3. The
boundary of M3, or equivalently of the closure of N(Γ5), is a genus six 2-surface,
call it Σ6. Any loop of M3 can be deformed to live on this boundary. An (over-
complete) basis of non-contractible loops on Σ6 is given by a set of 4× 5 loops
transverse to the tubes and 10 lines running longitudinally along the tubes, see
Fig. 1. Labeling the vertices of Γ5 with a = 1, . . . , 5, the longitudinal parallel
transport from a to b is Gba = G−1

ab , and the transverse holonomy based at a
and encircling the tube ab is Hb(a).

In this basis the topological constraints mentioned above break up into three
classes. They are:

closures
←−
ΠbHb(a) = 1; (1)

parallel transports GbaHb(a)Gab = Ha(b)−1; (2)

bulk contractions

{
GacGcbGba = 1,

G34G42G23 = H1(3).
(3)

The closures are a consequence of contractibility around each vertex. The par-
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allel transport conditions are due to contractibility around each tube. The
last class of equations come from contractibility in the bulk of M3 and are ex-
pressed in terms of a set of six independent cycles. The first five are (abc) ∈
{123, 125, 134, 235, 345}, see Fig. 1, while the last is explicit. Eq. (3) is a
consequence of the single essential crossing in the planar projection.

Returning to these holonomies as gravitational observables on the 4-simplex
we must account for the fact that each tetrahedron of the simplex defines a
three-dimensional frame. This is why the four holonomies {Hb(a)}b associated
to tetrahedron a should stabilize the direction transverse to this frame (when
appropriately parallel transported [20, 21, 22]). We take the transverse direction
to be timelike and therefore these holonomies are part of an SO(3) subgroup of
the Lorentz group. When viewed as a condition on the flat connection of M3

we call this requirement the ‘geometricity constraint’.
We see that corresponding to each 4-simplex geometry in (A)dS there is a

flat connection on M3 satisfying the geometricity constraints. In a generaliza-
tion of a classic theorem due to Minkowski [23, 24], we have shown that the
converse also holds:
Theorem 1. There is a bijection between a dense set of Lorentz flat connec-
tions on M3 satisfying the geometricity constraints and non-degenerate convex
constant curvature 4-simplex geometries, up to parity. [20, 21]
Because this is a bijection, a flat connection can be used to reconstruct either
a positively or a negatively curved geometry, but only one of the two. For a
precise statement of the non-degeneracy requirements see [22, 20, 21].

Sketch of the proof: The SO(3) little group associated to each vertex iden-
tifies the timelike transverse direction to each tetrahedron. Forming the ap-
propriately parallel transported scalar products among these directions we can
build the matrix of hyperbolic cosines of the hyperdihedral boost angles Θab,
which turn out to be the class angles of Gab. This Gram matrix fully encodes
the geometry of a unique 4-simplex. One finally checks the consistency of the
reconstructed geometry with the other data contained in the holonomies Hb(a),
such as the areas aab of the triangular faces. The determinant of the Gram
matrix encodes the sign of the curvature.

Chern-Simons quantization—Having translated the space of four-dimensional
simplicial geometries into the space of flat connections on a three-manifold, it
becomes natural to quantize this space using Chern-Simons (CS) theory. Indeed,
CS theory is the only three-dimensional gauge theory with flat connections as
solutions to the equations of motion. To connect with the geometrical recon-
struction above we still miss one ingredient, the geometricity constraint. We
impose this constraint as a boundary condition on the CS path integral on M3.

Both for mathematical convenience and with the intention of eventually
coupling this theory to fermions, we lift the Lorentz group to SL(2,C). (This
introduces a finite lift ambiguity into Theorem 1 with an as yet unclear physical
significance.) With I[A] = 1

4π

∫
M3

tr
[
AdA+ 2

3A
3
]

the complex action is, [25,

26],

S[A, Ā] =
k

2
I[A] +

k̄

2
I[Ā], (4)
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where A is an SL(2,C) connection in the fundamental representation, k is the
complex level (or inverse coupling), and the overbars indicate complex conju-
gation. Efforts to define precisely the SL(2,C) theory have, in part, relied on
analytic continuation of SU(2) CS theory [27], see also [28, 29]. For our present
purposes, the formal path-integral definition is sufficient.

With quantization in mind we seek a set of canonically conjugate coordinates
in the classical theory. A standard and convenient choice are complex Fenchel-
Nielsen (FN) coordinates x and y, which can be understood as follows [30,
31, 21]. We restrict attention to the holomorphic sector, with the other one
obtained by complex conjugation. The Atiyah-Bott symplectic structure, Ω, of
CS theory sets transverse and longitudinal parts of the connection as conjugate.
A symmetry reduction of the gauge trades the connection variables for our
transverse and longitudinal holonomies [32], which also turn out to be conjugate.
More precisely, if we introduce the eigenvalues of the transverse and longitudinal
holonomies

xab = euab and yab = e−
2π
k vab (5)

respectively, then {uab, vcd} = δab,cd. To complete the variables make a trinion
(pants) decomposition of each 4-valent vertex and introduce {ua, va}a analo-
gously to Eq. (5), but for the internal leg of the decomposed vertex.

The variables {ua, va}a are purely imaginary as the geometricity constraint
imposes that they are in an SU(2) subgroup of SL(2,C). The reconstruction
theorem implies, [20, 21], that uab ∝ iΛaab, where aab is the area of the cor-
responding triangle in the 4-simplex, and hence uab is also purely imaginary.
Finally, 2π

k vab is complex and its real part is ∝ Θab, which is the hyperdihedral
boost angle between tetrahedra a and b. All of the logarithmic coordinates u
and v have the standard branch ambiguity, leaving their values defined only up
to an element of 2πiZ and this will play a role briefly.

With the classical coordinates specified we turn to constructing the phys-
ical wave function of a quantum grain of geometry. We do this in the u-
representation and for notational convenience introduce u = (ua, uab). The
wave function is constructed using the path integral

Z(u, ū) =

∫
u, ū

DADĀ e
i
~S[A,Ā] , (6)

where the subscripts indicate that the integration is performed at fixed u. This
wavefunction satisfies a set of Schrödinger-type equations, A(x̂, ŷ; k)Z(u, ū) = 0
and its anti-holomorphic analog, which are quantum mechanical implementa-
tions of the topological constraints of Eq. (3). As functions of the FN coordi-
nates, the A are known as A-polynomials, and are a specific quantization of the
celebrated topological invariant of 3-manifolds [33, 34, 35]. The wave function
Z(u, ū) factorizes, [14],

Z(u, ū) = ΣαnαZ
α(u)Zα(ū). (7)

Here, Zα(u) and Zα(ū) are the holomorphic and anti-holomorphic 3d-blocks,
and α labels different branches of the solutions to the A-polynomial equations.
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Figure 2: A sketch of the Lagrangian manifolds LA and Lu and their intersections in uv-space.

The reconstruction demonstrates that there are two branches, α = 1, 2, corre-
sponding to the two parities of the 4-simplex. In terms of FN coordinates these
solutions differ only in the sign of the real part of 2π

k vab, that is, in the sign of
the boost Θab. Requiring suppression of other possible branches can be used to
fix the coefficients nα and is under study.

Note that the holomorphic block Zα(u) is defined through an analytic con-
tinuation of the SU(2) CS theory, hence the name ‘holomorphic’ [36, 27, 35, 14].
While the Darboux coordinates u and v are useful for the WKB analysis below,
it turns out that non-perturbatively the holomorphic block is a meromorphic
function of x and thus must be periodic in u. This is connected with the finite-
ness of our model discussed in the conclusion.

WKB analysis—To understand the semiclassical, small ~, limit of these
wavefunctions we use a geometrical approach to the WKB approximation. A
WKB wavefunction is of the form ΣαRαe

i
~ Iα . The phase function Iα is a solu-

tion of the Hamilton-Jacobi equation and is most easily constructed using the
geometry of Lagrangian submanifolds of the phase space [37]. Here we focus on
the relative phase between the two branches of Eq. (7). We comment on the
overall phase below.

To calculate the phase difference I12 ≡ I2 − I1, we have to choose a loop
` in phase space connecting the two critical points and integrate the Liouville
form along it, I12 =

∫
`
ϑ. For the result to be a solution of the Hamilton-Jacobi

equation, the loop is chosen to lie along two Lagrangian submanifolds. The first
one, LA, is implicitly defined by the equations of motion A = 0. The second, Lu,
fixes the representation of the wavefunction and is simply the plane u = const.
These two manifolds intersect precisely at the stationary phase points, where a
pair of parity related classical geometries is picked out, see Fig. 2.

For calculating the integral of the Liouville form the choice of path on a
Lagrangian manifold is locally irrelevant due to the defining property Ω|L = 0.
One remaining subtlety is the shift of the phase as you integrate through a
caustic of LA, where the geometry is degenerate, this is the well-known Maslov
index η [38, 39]. We defer study of this index, which may vanish [25, 26, 34], to
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future work.
An effective technique to calculate I12(u) is to consider small deformations

of the loop. To this end, we consider two nearby solutions differing by a small
amount δu. The variation δI12 splits into contributions along Lu, Lu+δu, and
LA. The first two contributions vanish because ϑ = vdu. Thus,

δI12 = (v(2) − v(1))δu =
Λk

12πi
ΣΘabδaab (8)

and is calculated along the manifold of geometrical solutions LA. The δua
contributions cancel between the two branches since v

(2)
a = v

(1)
a by construction.

Hence this has exactly the form of the Schläfli variation [40, 41]. The Schläfli
identity then allows us to conclude that

I12 =
Λk

12πi

(
ΣΘabaab − ΛV + C12

)
, (9)

where C12 is a geometry independent integration constant, possibly including η,
that we drop in what follows. The geometric origin of the Schläfli identity guar-
antees that the sign of the Λ in the action agrees with that of the reconstructed
4-simplex. Restricting to the real contour of functional integration, where A
and Ā are complex conjugated variables, we obtain

Z ∼ cos

{
Λ=(k)

12π~

[
ΣΘabaab − ΛV

]}
, (10)

up to a global phase, which simplifies in the case of 4-simplices in the bulk of

the triangulation. Identifying the coefficient Λ=(k)
12π~ with (8πG~)−1 we recognize

the curved Regge action calculated on our semiclassical grain of spacetime.
This result is analogous to the asymptotics of the Turaev-Viro model for three-
dimensional quantum gravity.

While discussing the branches of LA we ignored the lift ambiguity of the
logarithmic FN coordinates. When properly accounted for, this ambiguity enters
the argument of Eq. (10) and adds a term

Λ<(k)

6~
ΣNabaab, (11)

where the Nab are arbitrary integers. This ambiguity can be removed if we
require a quantization of the areas

aab ∈ 8πγG~Z, (12)

where γ = =(k)/<(k), and the expression (11) becomes an integer multiple of
2π. This requirement on the areas is not a consequence of any periodicity of the
wave function since the expression (10) is the leading order in the asymptotics
and this approximation need not be periodic. However, it is interesting to note
that imposing this requirement makes the curved Regge action single valued
and connects with the loop gravity literature discussed below.
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Demanding invariance under large gauge transformations of the CS theory
leads to quantization of <(k) in units of ~. This corresponds to a quantization
of the area of the cosmological horizon 4πR2

Λ in terms of the fundamental area

of Eq. (12), where RΛ =
√

3/|Λ| is the radius of curvature of (A)dS.
This concludes the WKB analysis of a single 4-simplex. Just as a simpli-

cial complex can be built from gluing individual 4-simplices we can glue graph
complement manifolds using surgery at the graph vertices; the geometricity
conditions must be imposed at all surgery sites. At fixed areas the WKB anal-
ysis goes through simplex by simplex and gives a quantum simplicial complex
weighted by its global curved Regge action. A full understanding of the physics
on the whole complex and its continuum limit is involved. For example, what
happens when you sum over the areas (the flatness problem) and the role of
the local fluctuation of a simplex’s parity (the cosine problem) are recognized
difficulties under investigation.

Crucially, although the geometrical reconstruction proceeds simplex-by-simplex,
the cosmological constant and its sign must be semiclassically consistent across
the complex. A WKB solution exists only if the curvature of all the simplices
is the same. Note that this does not mean that the simplicial manifold cannot
support curvature defects as in Regge calculus. This consistency is a conse-
quence of the fact that the sign of the curvature is already determined at the
level of the tetrahedra in the boundary of the simplex and therefore propagates
to neighboring simplices.

Relation with the EPRL model—A natural way to impose boundary condi-
tions on the connections in M3 = S3 \ Γ5 is to insert an appropriate Γ5 Wilson
graph operator in S3. A Wilson graph operator satisfying our desiderata can
be built out of the EPRL intertwiners at the core of spinfoam quantum gravity
[42, 43]. These desiderata are the geometricity constraints and their consistent
implementation with quantized areas. In the spinfoam context the geometric-
ity constraints are referred to as ‘simplicity constraints’ and are used to turn
topological BF theory into general relativity by imposing that the B-field is the
square of the tetrad field, B = e ∧ e.

The area spectrum follows from the quantization of the classical variables via
SU(2) and SL(2,C) representation theory. This procedure associates the spin
quantum numbers of SU(2) to geometrical areas. The spins of SU(2) are half-
integers, not integers, and this introduces an area-dependent sign in Eq. (10),
already present in the Λ = 0 spinfoam asymptotics [44] and in the Ponzano-
Regge model [45]. The spectral spacing is determined by the Planck area, 8πG~,
multiplied by the dimensionless Barbero-Immirzi parameter, and the latter can
be identified with our γ.

Early work [46] on loop gravity attempted to quantize the theory with γ = i
but ran into difficulties [47]. Analytically continued CS theory allows for a con-
tinuation of both <(k) and =(k) to arbitrary complex numbers [27] (notice that
this relaxes the quantization condition on <(k) mentioned above). This freedom
provides an opportunity for spinfoam models, since it might be used to consis-
tently continue the real Barbero-Immirzi parameter back to the imaginary unit.
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This continuation is related to the original self-dual Ashtekar variables, with
multiple advantages such as a more intimate relation to covariant geometries,
a simplification of the dynamics, and compelling black-hole entropy counting
[48, 49].

The present work gives a CS theory generalization to four dimensions of the
quantum group deformation used in three-dimensional quantum gravity models
to implement a non-vanishing cosmological constant, see [22]. Although for
three-dimensional models finiteness on a fixed simplicial complex is limited to
the positive cosmological constant case [7], in the model presented here finiteness
extends to both signs of Λ. In fact, finiteness is a consequence of the presence of
a finite number of states, see [50, 51], which in turn follows from the periodicity
and discreteness of u, Eqs. (5) and (11). This illustrates one of the, we hope,
many advantages of including a cosmological constant in quantum gravity.
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