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1 Introduction

In 1897, Hermann Minkowski proved a reconstruction theorem stating that to each non-planar polygon with
L edges {~a` ∈ R3, ` ∈ {1, . . . , L}|

∑
` ~a` = ~0}, one can associate a unique convex polyhedron in Euclidean

three-space E3 with L faces. The area and outward pointing normal of its `-th face are |~a` | and ~a`/|~a` |,
respectively [5, 40]. One hundred years later, in 1996, Michael Kapovich and John J. Millson showed how
the space of polygons with fixed edge lengths admits a natural phase space structure [35]. The combination
of these results is remarkable: it points out that discrete geometries are a natural arena for dynamics. One
may then wonder whether this arena is related to the theory of dynamic geometry par excellence, general
relativity. The answer turns out to be positive, though not in a trivial way. In fact, the Kapovich-Millson
phase space can be quantized via geometric quantization techniques [18] and this quantized space gives a
compelling interpretation of the Hilbert space of loop quantum gravity [45, 49] (restricted to a single graph)
in terms of discrete quantum geometries [11, 29]. The main notions behind this are the following. In loop
quantum gravity, the fundamental phase-space variables are su(2) fluxes (momenta) and SU(2) holonomies
(coordinates) carried by the Faraday-Wilson lines of the gravitational field. These lines cross at nodes, where
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SU(2) gauge invariance is imposed as a momentum conservation equation, often referred to as the Gauß or
closure constraint

L∑
`=1

(~τ`)R = ~0 , (1.1)

here ` labels the L Faraday-Wilson lines at a node (all supposed outgoing), and (~τ`)R is the right invariant
vector field on the `-th copy of SU(2), i.e. the flux operator along the `-th Faraday-Wilson line. Since the
norm of the flux of the gravitational field carried by one of these lines is associated to the area it carries [46], it
is physically meaningful to reinterpret this equation using Minkowski’s theorem. In this way, it can be read
as the definition of a quantum convex polyhedron at each intersection of L gravitational Faraday-Wilson
lines. How these polyhedra are glued to one another and how they encode the extrinsic geometry of the
three-space they span is more complicated and we refer to the cited literature for more details. Nevertheless,
the crucial point here is that to each kinematical state of loop quantum gravity one can associate a discrete
piecewise-flat quantum geometry thanks to Minkowski’s theorem.

In this paper we move toward the generalization of this construction to the case where the model space
for the discrete geometry is curved instead of flat. In other words, we generalize Minkowski’s theorem
to tetrahedra whose faces are flatly embedded in the three-sphere S3 and hyperbolic three-space H3, and
conjecture that a similar construction may hold for general curved polyhedra. From a purely mathematical
point of view the generalization of Minkowski’s theorem is interesting in its own right, and requires new
inputs in order to replace “the notion of face direction by some notion not relying on parallelism in the
Euclidean sense” ([5], p. 346), or, in other words, to deal with the parallel transport of the face normals
to a single base point. Moreover, the question arises whether the space of curved tetrahedra also admits a
natural phase space structure, and eventually how close it is to the Kapovich-Millson one. We will show that
a natural phase space structure exists, and it coincides with the one studied by Thomas Treloar in [50].

Surprisingly, this phase space structure is the same in both the spherical and hyperbolic case, which have
a unified description in our framework, and it is exactly the generalization of the Kapovich-Millson phase
space to geodesic polygons embedded in S3. (This S3 is not the manifold in which the curved tetrahedron is
embedded and, again, underlies both the positively- and negatively-curved cases.) Beside pure mathematics,
this generalization is relevant to physics as well. Indeed, this construction is thought to bear strong relations
to quantum gravity in the presence of a cosmological constant. On the one hand, this is apparent through
the requirement that the simplicial decomposition of the bulk geometry be a solution of Einstein’s field
equations with the cosmological term within each building block [8]. On the other, curved tetrahedra made
an appearance already in the semiclassical limit of the Turaev-Viro state sum [41, 47, 48, 51], which in turn,
is known to be related to Edward Witten’s Chern-Simons quantization of three-dimensional gravity with
cosmological constant [52]. The relations with quantum gravity in (Anti-)de Sitter space constitute our main
motivation [31].

Several works, with close connections to ours, have focused on three spacetime dimensions. Notably, in
[14, 15, 17, 21, 22] and [42, 43], the precise connection was investigated between the Chern-Simons quanti-
zation of three dimensional gravity and the spinfoam or loop-theoretic polymer quantizations, respectively.
With this in mind, we should emphasize that the present work studies three dimensional discrete geometries
as boundaries of four dimensional spacetimes; this is in contrast to the research cited above, which focused
on the description of geometries in two-plus-one dimensions. This difference in dimensionality implies a
mismatch in the geometrical quantities encoded in the Faraday-Wilson lines: in four and three spacetime
dimensions these carry units of area and length respectively. Unsurprisingly, the geometrical reconstruction
theorems are completely different in the two cases.

A second interesting divergence of the two approaches is the fact that the sign of the geometric curvature
must be decided a priori in the two-plus-one case (in particular, Girelli el al. restrict their analysis to the
hyperbolic case), while it is determined at the level of each solution in our case. Again, this is because our
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formalism automatically allows for—in fact, requires—both positively and negatively curved geometries. It
is intriguing to attribute this difference to the lack of a local curvature degree of freedom in three-dimensional
gravity (since these are purely kinematical constructions, one should take this statement cum granu salis).
In spite of these differences, there is an important feature the two constructions share: in both cases one
is naturally lead to consider phase-space structures and symmetries that are deformed with respect to the
standard ones of quantum gravity. In particular the momentum space of the geometry is curved and the
symmetries are distorted to (quasi-)Poisson Lie symmetries, which are the classical analogues of quantum-
group symmetries. We leave the discussion of the quantization of our phase space and its symmetries for a
future publication.

Another piece of recent work in the loop gravity literature that interestingly shares some features with
our construction is by Bianca Dittrich and Marc Geiller [9, 19, 20]. While constructing a new representation
(a new “vacuum”) for loop quantum gravity, adapted to describe states of constant curvatures (and no metric),
they are lead to deal with exponentiated fluxes as the meaningful operators. As a consequence, areas in
their formulation are also associated to SU(2)—instead of su(2)—elements. Nonetheless, the parallel seems
limited, since it appears that they are not forced to deform their phase space and symmetry structures.

Finally, Kapovich and Millson, and later Treloar, recognized that the phase space structure of polygons
corresponds to William Goldman’s symplectic structure on the moduli space of flat connections on an L
times punctured two-sphere. Our result provides this correspondence with a more direct and physical in-
terpretation. In fact, the punctures on the two-sphere can be understood as arising from the gravitational
Faraday-Wilson lines piercing an ideal two-sphere surrounding one of their intersection points. Exactly as
in the flat case, these lines characterize the face areas and define a polyhedron. This picture can be used
to extend the covariant loop quantum gravity framework in four spacetime dimensions, the spinfoam for-
malism, to the case with a non-vanishing cosmological constant. This is the goal of our companion paper
[31], which proposes a generalization of the spinfoam models constructed by John Barrett and Louis Crane
[7, 10], and which eventually developed into the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK)
models [23, 24, 26].

In the companion paper [31], we analyze SL(2,C) Chern-Simons theory with a specific Wilson graph
insertion. The model can be viewed as a deformation of the EPRL/FK model aimed at introducing the
cosmological constant in the covariant loop quantum gravity framework. The semiclassical analysis of
the model’s quantum amplitude is given by the four-dimensional Einstein-Regge gravity, augmented by a
cosmological term, and discretized on homogeneously curved four simplices. Interestingly, the key equation
studied in this paper, i.e. the generalization of the Gauß (or closure) constraint to curved geometry, arises in
that context simply as one of the equations of motion.

The present paper is divided in two parts. In the first we introduce the generalization of Minkowski’s
theorem to curved tetrahedra. First we discuss the strategy underlying the theorem in the spherical case
(section 2). We then gradually extend our analysis to more general settings eventually including both signs
of the curvature (section 3 to 5). The first part concludes with the statement and proof of the theorem in
its general form (section 6). The second part is dedicated to the description of the phase space of shapes of
discrete tetrahedra. We first introduce the subject and its relations with curved polygons and moduli spaces
of flat connections (section 7). Then, we review the quasi-Poisson structure one can endow SU(2) with (sec-
tion 8), which serves as a preliminary step to the actual description of the phase space of shapes (section 9).
We conclude this part with a brief account of the equivalent quasi-Hamiltonian approach (section 10). The
paper closes with some physical considerations and an outlook towards future developments of the work
(section 11 and 12).
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Part I

Minkowski’s theorem for curved thetrahedra
2 General strategy and the spherical case

In the flat case, Minkowski’s theorem associates to any solution of the so-called “closure equation”

4∑
`=1

~a` ≡ ~a1 + ~a2 + ~a3 + ~a4 = ~0 , with ~a` ∈ R3 , (2.1)

a tetrahedron in E3, whose faces have area a` := |~a` | and outward normals n̂` := ~a`/a`. We call the vectors
~a` ≡ a`n̂` area vectors.

Our generalization begins with the most symmetrical curved spaces, the three-sphere S3 and hyperbolic
three-space H3, which have positive and negative curvature, respectively. In these ambient spaces, define a
curved polyhedron as the convex region enclosed by a set of L flatly embedded surfaces (the faces) inter-
secting only at their boundaries. A flatly embedded surface is a surface with vanishing extrinsic curvature
and the intersection of two such surfaces is necessarily a geodesic arc of the ambient space. In the spherical
case, the flatly embedded surfaces and the geodesic arcs are hence portions of great two-spheres and of great
circles, respectively. Note that in the hyperbolic case this definition includes curved polyhedra extending to
infinity. This and other properties specific to the hyperbolic case are discussed beginning in the next section.

Our main result is that Minkowski’s theorem and the closure equation, Eq. (2.1), admit a natural gener-
alization to curved tetrahedra in S3 and H3. The curved closure equation is

O4O3O2O1 = e , with O` ∈ SO(3), (2.2)

where e denotes the identity in SO(3). In the remainder of this section, we explain how this equation encodes
the geometry of curved tetrahedra. Before going into this, we want to stress the essential non-commutativity
of this equation, which mirrors the fact that the model spaces are curved, and therefore is the crucial feature
of our approach. Indeed, non-commutativity has far-reaching consequences that are particularly apparent
in the last section of the paper where the curved closure equation is used as a moment map. This non-
commutativity will also be the source of an ambiguity in the reconstruction that is unique to the curved
case.

As in the flat case, the variables appearing in the closure equation are associated to the faces of the
tetrahedron. Indeed, the {O`} shall be interpreted as the holonomies of the Levi-Civita connection around
each of the four faces of the tetrahedron. Since the faces of the tetrahedron are by definition flatly embedded
surfaces in S3, any path contained within them parallel transports the local normal to the face at its starting
point into the local normal to the face at its endpoint. Therefore, choosing at every point of the face a frame
in which the local normal is parallel to ẑ, one can reduce via a pullback the so(3) connection to an so(2) one
without losing any information. (Note that there always exists a unique chart covering an open neighborhood
of the whole face.) In this two-dimensional setting, it is a standard result that a vector parallel transported
around a closed (non self-intersecting) loop within the unit sphere gets rotated by an angle equal to the
area enclosed by the loop. Therefore, the holonomy O` around the `-th face of the spherical tetrahedron,
calculated at the base point P contained in the face itself, is given by

O`(P) = exp
¶

a`n̂`(P) · ~J
©
, (2.3)

where { ~J} are the three generators of so(3), a` is the area of the face, and n̂(P) ∈ TPS3 is the direction normal
to the face in the local frame at which the holonomy is calculated. Let us for a second ignore the issues
related to curvature and non-commutativity, and discuss what happens in the flat Abelian limit where the
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Figure 1. A standard numbering of the vertices of the tetrahedron, which also induces a particular topological orienta-
tion. The BurntOrangep character of this tetrahedron is simply a device for underlining its spherical nature. However,
similar pictures result from stereographic projection of a spherical tetrahedron in S3 onto R3. This projection sends great
two-spheres of S3 into spheres of R3, though possibly with different radii. Note that the convex or concave aspect of the
stereographically projected spherical tetrahedron has no intrinsic meaning.

radius of curvature of the three-sphere goes to infinity and the ambient space becomes nearly flat. To make
this explicit, introduce the sphere radius r into the previous expression:

O` = exp
{a`

r2 n̂` · ~J
}
. (2.4)

In the limit r → ∞, the curved closure equations reduces, at the leading order, to the flat one:

O`
r→∞
≈ e +

a`
r2 n̂` · ~J + . . . ⇒ O4O3O2O1

r→∞
≈ e + r−2

Ä
a4n̂4 + a3n̂3 + a2n̂2 + a1n̂1

ä
· ~J + . . . . (2.5)

Importantly, the geometrical meaning of the variables is exactly the same as in Eq. (2.1). Thus, our formu-
lation subsumes the flat one as a limiting case.

In the curved setting, it is crucial to keep track of the holonomy base point; for within a curved geometry,
only quantities defined at, or parallel transported to, a single point can be compared and composed with one
another. Therefore, all four of the holonomies appearing in the curved closure equation must have the
same base point. In spite of this, there is no point shared by all four faces of the tetrahedron at which one
can naturally base the holonomies, and therefore at least one of them must be parallel transported away
from its own face before being multiplied with the other three. Actually, the curved closure equation itself
has no information about the base points of the holonomies or about which paths they have been parallel
transported along to arrive at a common frame. This must be an extra piece of information that needs
to be fed into the reconstruction algorithm. Analogous interpretational choices—though for clear reasons
less numerous—have to be made in the flat case. Here, we provide a standard set of paths on an abstract
tetrahedron embedded in S3 along which the {O`} are assumed to be calculated. Such a choice of standard
paths must also account for the presence of the identity element on the right hand side of the curved closure
equation. This comes from the fact that the chosen standard paths compose to form a homotopically trivial
loop. Interestingly, the curved closure equation can also be related to an integrated version of the Bianchi
identities for the three dimensional Riemann tensor (see e.g. [27]).

Label the vertices of the geometrical tetrahedron as in Figure 1. This numbering induces a topological
orientation on the tetrahedron, which must be consistent with the geometrical orientation of the paths around
the faces. Faces are labeled via their opposite vertex (e.g., face 4 is the one at the bottom of Figure 1),
while edges are labeled by the two vertices they connect. Each face is traversed in a counterclockwise
sense when seen from the outside of the tetrahedron. This is consistent with the tetrahedron’s topological
orientation. The normals appearing in the holonomies, Eq. (2.3), are hence the outward pointing normals to
the face whenever the base point P of the holonomy O(P) lies on that face (right-handed convention). There
is no natural common base point for all four faces. However, any three faces do share a point. Pick faces
` = 1, 2, 3, which share vertex 4, and base the holonomies at this vertex:

O` := O`(4). (2.6)
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Figure 2. The set of simple paths used to interpret the holonomies {O`}.

Then, in the case of holonomies O1,2,3(4), the vectors {n̂1(4), n̂2(4), n̂3(4)} are outward normals to their re-
spective faces in the frame of vertex 4. Clearly, this is not the case for the normal n̂4(4). Thus, we must
specify the path used to define the holonomy around face 4 and its transport to vertex 4. By now, this path
is completely fixed by the curved closure equation. It consists of defining O4(2) in an analogous way to
the O1,2,3(4) and then parallel transporting it to vertex 4 through the edge (42). The set of relevant paths is
shown in Figure 2. Up to the choice of the base point, this is manifestly the simplest (and shortest) set of
paths going around each face in the order required by the closure equation and composing to the trivial loop.
For this reason, we will call these simple paths.

The holonomies along the simple paths, {O`}, can be expressed more explicitly by introducing the edge
holonomies {om`}, encoding the parallel transport from vertex ` to vertex m along the edge connecting them
(we use leftward composition of holonomies). Thus, o`m ≡ o−1

m` , and
O1 = o43o32o24

O2 = o41o13o34

O3 = o42o21o14

O4 = o42O4(2)o24 = o42 [o23o31o12] o24

. (2.7)

Let us stress once more that, since the closure equation is preserved by a cyclic permutation of the holonomies,
the assignment to a specific holonomy of the label “4” is indeed an extra input needed by the reconstruction.
We call this vertex the special vertex.

Another important symmetry of the closure equation is its invariance under conjugation of the four
holonomies by a common element of SO(3):

O` 7→ RO`R−1 , with R ∈ SO(3) . (2.8)

This maps the areas a` into themselves, and the normals n̂` into Rn̂`. (Here and in the rest of the paper, bold-
face symbols stand for matrices in the fundamental representation; e.g. in the previous equation, R is the
3 × 3 matrix corresponding to R ∈ SO(3).) This symmetry can be interpreted either as a change of reference
frame at the base point 4, or as the effect of a further parallel transportation of the {O`} along another piece
of path from vertex 4 to some other base point. The latter interpretation is particularly compelling when
R = o24 : the result of this transformation is an exchange of the rôle of vertices (and therefore faces) 4 and
2. We conclude that picking vertex 4 or 2 as special, are gauge equivalent choices. So, it is more appropriate
to refer to the edge (24) as the special edge rather than referring to 2 or 4 as special vertices.

A set of holonomies that close {O` |
∏

` O` = e} modulo simultaneous conjugation, is naturally in-
terpreted as the moduli space of SO(3) flat connections on a sphere with four punctures. Indeed, since the
holonomies of a flat connection can only depend on the homotopy class of the (closed) path along which they
are calculated, these connections are maps from the fundamental group of the punctured sphere to SO(3).
Therefore, the moduli space of flat connections is this space of maps modulo conjugation:

Mflat
[
L-punctured S2,SO(3)

]
� Hom

[
π1(L-punctured S2),SO(3)

]/
SO(3)

�
{

O1, . . . ,OL ∈ SO(3) | OL · · ·O1 = e
}/

conjugation (2.9)
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Figure 3. The dihedral angle θ`m spans the arc from outward normal ` to m. Here we illustrate the case {`,m} = {1, 3}.

Conjugation is the residual gauge freedom left at the arbitrarily chosen base point of the holonomies. The
connection with the tetrahedron’s geometry arises from the observation that the fundamental group of the
4-punctured sphere is isomorphic to that of the tetrahedron’s one-skeleton. However, this isomorphism is
not canonical, and constitutes the extra piece of information that is needed to run the reconstruction, i.e. the
knowledge of the precise paths associated to the {O`}.

The choice of a special edge, e.g. (24), breaks permutation symmetry. However, conjugation is a
true symmetry of the problem, and is the analogue of rotational invariance for the flat case. Therefore, any
quantity with an intrinsic geometrical meaning must be obtained through conjugation invariant combinations
of the {O`}. The normals {n̂`} are not gauge invariant observables, but their scalar and triple products are.

Scalar products between the normals have a clear meaning: they encode the dihedral angles between
the faces of the tetrahedron. Because the faces of the tetrahedron are flatly embedded, these dot products are
invariant along the edge shared by two faces and hence the dihedral angles are well defined. For faces 1, 2,
and 3, the situation is simple. The holonomies {O`} and the normals appearing in their exponents are defined
at vertex 4, which is shared by all three faces. Therefore, indicating with θ`m the (external) dihedral angle
between faces ` and m, see Figure 3,

cos θ`m = n̂` · n̂m , for `,m ∈ {1, 2, 3} . (2.10)

Recall that O4 is first defined at vertex 2 and then parallel transported to vertex 4 along the edge (24).
Because of the gauge equivalence of 2 and 4 as special vertices, and because vertex 2 is shared by faces 1,
3, and 4, calculating the dihedral angles between these face is as simple as before:

cos θ`m = n̂` · n̂m , for `,m ∈ {1, 3, 4} . (2.11)

To see this in a more direct way, note that, for example, cos θ14 = n̂1(2) · n̂4(2) = [o24n̂1(4)] · [o24n̂4(4)] =

n̂1(4) · n̂4(4), which is exactly the result of the previous equation.
The remaining dihedral angle, between the opposite, special faces 2 and 4, is more delicate. This is

because neither of the vertices 2 or 4 is shared by the faces 2 or 4. To calculate cos θ24, we use the normals
at vertex 3:

cos θ24 = n̂2(3) · n̂4(3)

= [o34n̂2(4)] · [o32o24n̂4(4)]

= n̂2(4) ·O1n̂4(4) . (2.12a)

The paths used for transporting the normals from vertex 3 to vertex 4 are not accidental; they lie within
their own face up to the point where the face holonomy is based, and then move on, when necessary, to
vertex 4 through the special edge (24). All paths lying within a single face are equivalent because of the flat
embedding and so we use the most convenient choice.

Had we chosen to define θ24 at vertex 1 instead of 3, the result would have been

cos θ24 = n̂2(4) ·O−1
3 n̂4(4) . (2.12b)
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Figure 4. The three vectors involved in the triple product at vertex 4. Given the topological orientation of the tetrahedron,
its convexity, and supposing all normals are outward pointing, one finds that sgn [(n̂1 × n̂2) .n̂3] > 0.

A quick check shows that these two results are equivalent, thanks to the closure equation and the relation
O`n̂` = n̂`. Summarizing, ®

cos θ24 = n̂2 ·O1n̂4 = n̂2 ·O−1
3 n̂4

cos θ`m = n̂` · n̂m for {`,m} , {2, 4}
(2.13)

Notice that θ`m ∈ (0, π) in order to have a convex tetrahedron, and although this condition would be redundant
for a tetrahedron in flat space, one could use the sphere’s non-trivial topology to build non-convex spherical
tetrahedra.1 We are not interested in reconstructing such objects. Moreover, the previous condition implies
that we can invert Eq. (2.13) to obtain the values of the {θ`m} themselves. These formulas require only data
entering the curved closure equation, and not the edge holonomies {o`m}, as expected from considerations of
gauge invariance.

There is still a subtle point to clarify. How can the directions of the outward normals {n̂`} be extracted
from the {O`}? The face areas of the tetrahedron are positive real numbers a` lying in the interval (0, 2π)
due to the tetrahedron’s convexity (see footnote 1). However, the holonomy O` cannot distinguish between
two triangles lying on the same great two-sphere in S3 that have areas a and (2π − a), respectively, and
corresponding normals n̂ and −n̂. In formulas:

exp
¶

a n̂ · ~J
©

= exp
¶

(2π − a)(−n̂) · ~J
©
. (2.14)

This is a consequence of the fact that both the trivial loop and a great circle have trivial SO(3)-holonomy. To
resolve this ambiguity, it is enough to appeal to convexity by checking the signs of the triple products among
the normals. Indeed, the triple products are naturally associated to the vertices of the tetrahedron, and their
signs relate to its convexity (as well as to our choice of its topological ordering, and to the outward pointing
property of the normals {~n`}), see Figure 4.

Concretely, this translates into the following requirements for the normals:
at vertex 4: [n̂1(4) × n̂2(4)] · n̂3(4) > 0
at vertex 2: [n̂1(2) × n̂3(2)] · n̂4(2) > 0
at vertex 1: [n̂2(3) × n̂1(3)] · n̂4(3) > 0
at vertex 3: [n̂3(1) × n̂2(1)] · n̂4(1) > 0

. (2.15)

After parallel transporting to the common base point, vertex 4, these conditions read
(n̂1 × n̂2) · n̂3 > 0
(n̂1 × n̂3) · n̂4 > 0
(n̂2 × n̂1) ·O1n̂4 > 0
(n̂3 × n̂2) ·O−1

3 n̂4 > 0

. (2.16)

1To construct an example, one can replace one of the edges of a standard convex spherical tetrahedron with its complement with
respect to the great circle it lies on. Another example can be constructed by replacing a whole face with its spherical complement.
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A moment of reflection shows that these conditions are exactly what is needed to solve the ambiguity ex-
pressed in equation (2.14). In fact, among the 24 possible redefinitions of the normals by change of signs
{n̂`} 7→ {±`n̂`}, one and only one of them satisfies Eq. (2.16).

It is interesting to express the intrinsic geometrical quantities of the tetrahedron, such as areas, dihedral
angles, and triple products, directly in terms of the holonomies {O`}. The simplest conjugation invariant
set of observables are traces of products of the {O`}. These turn out to be quite involved. A convenient
alternative is given by the same invariants for the lifts of the {O`} to SU(2). Call these lifts {H`}, and their
matrices in the fundamental representation {H`}. The twofold ambiguity associated with the lift reflects the
geometric ambiguity of Eq. (2.14), which is already present at the level of SO(3). It is tempting to conjecture
that considering SU(2) closures solves this ambiguity, and that the SU(2) holonomies can be automatically
associated to the spin connection of the homogeneously curved space. Unfortunately, this is not the case,
since by multiplying the geometrical values of any two (or four) of the SU(2) holonomies by −1, one obtains
another sensible closure equation that looses its geometrical interpretation.2 Hence, we are lead to allow any
consistent lift with the SU(2) closure

H4H3H2H1 = e, (2.17)

and eventually correct for the sign of (an even number of) the holonomies in such a way that all the inequali-
ties of Eq. (2.16) are satisfied. A slightly different way of stating this, with closure only holding up to a sign,
is that what we are really considering are PSU(2) closures, and only these are in one to one correspondence
with curved tetrahedra. In the following we will mostly deal with SU(2) holonomies, to which we associate
geometries in an almost one-to-one way.

The convenience of using the {H`} comes from the simple identity:

H = exp
{

an̂ · ~τ
}

= cos
a
2

1 − i sin
a
2

n̂ · ~σ, (2.18)

where ~σ are the Pauli matrices, and ~τ := − i
2 ~σ. Define the connected part of the half-trace of the product of

p holonomies, 〈

p︷       ︸︸       ︷
H` · · ·Hm 〉C :

〈H〉C :=
1
2

Tr(H), (2.19a)

〈H`Hm〉C :=
1
2

Tr(H`Hm) −
1
4

Tr(H`)Tr(Hm), (2.19b)

〈H`HmHq〉C :=
1
2

Tr(H`HmHq) −
ï

1
4

Tr(H`)Tr(HmHq) + cyclic
ò

+
1
4

Tr(H`)Tr(Hm)Tr(Hq), (2.19c)

etc.

It is then straightforward to check that the geometrical quantities of interest are normalized versions of these
quantities:

cos
a`
2

= ±`〈H`〉C , (2.20a)

cos θ`m = n̂`.n̂m = −
±` ±m 〈H`Hm〉C»

1 − 〈H`〉
2
C

»
1 − 〈Hm〉

2
C

for {`,m} , {2, 4}, (2.20b)

(n̂` × n̂m) .n̂q = −
±` ±m ±q〈H`HmHq〉C»

1 − 〈H`〉
2
C

»
1 − 〈Hm〉

2
C

»
1 − 〈Hq〉

2
C

for {`,m, q} = {1, 2, 3} or {1, 3, 4}, (2.20c)

2A more sophisticated attempt to make this work would consist in allowing non-convex tetrahedra. Indeed, taking the equatorial
complement of one side of a standard tetrahedron would modify the area of the two adjacent faces from a` to 2π − a` at the price of
obtaining a non-convex tetrahedron. The problem with this extension is that there is no unique choice of sides to complement. Hence
the uniqueness of the reconstructed geometry would be lost.
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Figure 5. A spherical triangle illustrating the notation for Eqs. (2.21a) and (2.21b), the spherical cosines laws.

with the appropriate generalization for cos θ24 and the missing triple products. The {±`} signs can be thought
of as representing the branches of the respective square roots, and are uniquely fixed by imposing the posi-
tivity of the triple products, i.e. the convexity of the tetrahedron. They are eventually related to the areas via
±` = sgn sin a`, which is another way of stating the ambiguity {a`, n̂`} 7→ {2π − a`,−n̂`}.

At this point we are left with the simple exercise of reconstructing a spherical tetrahedron from its
known dihedral angles {cos θ`m}. Notice that the areas {a`} are not needed. Their consistency with respect
to the reconstructed geometry will be proved in complete generality in section 6. The key equation in the
reconstruction is the spherical law of cosines, relating the edge lengths of a spherical triangle to its face
angles. With the notation of Figure 5, this law and its inverse read

cos Ĉ =
cos ÂB − cos ÂC cos B̂C

sin ÂC sin B̂C
, (2.21a)

cos ÂB =
cos Ĉ + cos Â cos B̂

sin Â sin B̂
, (2.21b)

where ÂB is the arclength (on the unit sphere) between the vertices A and B, and Ĉ is the angle between
the arcs AC and BC at point C. By putting an infinitesimal sphere around the vertex ` of the spherical
tetrahedron, and looking at the spherical triangle defined by the intersections of this sphere with the edges
stemming from vertex `, one can use Eq. (2.21a) to deduce the three face angles at the vertex ` from the
tetrahedron’s dihedral angles. Once all the face angles are known, Eq. (2.21b) yields the edge lengths for
each face of the tetrahedron. Therefore, by using just one formula and its inverse, it is possible to deduce
the full geometry of the spherical tetrahedron from its dihedral angles. This is possible, in the curved case,
because the radius of curvature provides a natural scale to translate angles into arclengths. In this respect,
the flat case is a degenerate limit in which scale invariance appears. In the flat closure, Eq. (2.1), the areas
can all be rescaled by a common factor without altering the normals. No analogously simple symmetry is
present in the curved case.

3 A first look at the hyperbolic case

In the case of hyperbolic tetrahedra, the reconstruction theorem proceeds in essentially the same way as
above. Once again, the faces of the curved tetrahedron are required to be flatly embedded, which implies the
holonomies around them have a form completely analogous to those in the spherical case (Eq. (2.3)):

O`(P) = exp
¶
−a`n̂`(P). ~J

©
, (3.1)

where all the symbols are interpreted in the same manner, and the minus sign is due to the negative sign of
the curvature. A crucial fact about this formula is that the holonomies are again in SO(3), and not in some
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other group with different signature. The simple reason for this is that SO(3) is the group of symmetries of
the tangent space (at a point) of both S3 and H3.

We deduce the dihedral angles of the tetrahedron following similar reasoning to that of the previous
section. The extra minus sign of Eq. (3.1) has consequences only for the formulas that express the triple
products of the normals in terms of connected traces (Eqs. (2.15) and (2.20c)); the right-hand sides of these
equations should be multiplied by -1. The formulas for the dihedral angles, which involve two normals, are
only sensitive to the overall agreement in sign of the triple products, which is granted in both the spherical
and hyperbolic cases. This latter fact will be crucial in the following.

Once the dihedral angles have been calculated, the tetrahedron can be straightforwardly reconstructed
using the hyperbolic law of cosines:

cos Ĉ = −
cosh ÂB − cosh ÂC cosh B̂C

sinh ÂC sinh B̂C
, (3.2a)

cosh ÂB =
cos Ĉ + cos Â cos B̂

sin Â sin B̂
. (3.2b)

Note the extra minus sign in the first equation. These formulas conclude the list of ingredients needed for
the reconstruction in the hyperbolic case.

In section 5, however, we shall see that these ingredients are not quite enough to cover all the possible
hyperbolic cases naturally arising from the closure equation. A new generalization of hyperbolic geometry
has to be introduced.

4 Spherical or hyperbolic? The Gram matrix criterion

Up to now we have described two possible reconstruction procedures, one for spherical and one for hyper-
bolic tetrahedra. Nonetheless, the starting point we are proposing for the reconstruction theorem is the same
closure equation, Eq. (2.2). The natural question arises, whether there is an a priori criterion to decide which
type of tetrahedron one should reconstruct when given only the four closing holonomies (and the choice of
a special edge). There is such a criterion. The key is the unambiguousness character of the dihedral angles
discussed above: once a sign (either for the moment) of the four triple products has been fixed, the dihedral
angles of the curved tetrahedron are uniquely determined, irregardless of the curvature. But also, the dihe-
dral angles encode all the necessary information to reconstruct the full tetrahedron, including its curvature.
In this section we briefly review how the curvature can be deduced from the dihedral angles alone. While
part of this is standard, it allows us to introduce concepts and notation useful in the following section.

To begin, we reverse the logic, and suppose we are actually given a tetrahedron, flatly embedded in a
space of constant positive, negative or null curvature. Then, define its Gram matrix, as the matrix of cosines
of its (external) dihedral angles:

Gram`m := cos θ`m for ` , m, and Gram`` := 1 ∀` . (4.1)

One of the main properties of the Gram matrix is that the sign of its determinant reflects the spherical,
hyperbolic, or flat nature of the tetrahedron:

sgn det Gram =


-1 if the tetrahedron is hyperbolic
0 if it is flat

+1 if it is spherical
. (4.2)

A straightforward way to understand this result is by embedding in R4.
Let us start from the flat case, the simplest one. In this case, the parallel transport is trivial and

Gram(flat)
`m = n̂` · n̂m = δi jni

`n
j
m. By introducing the four 4-vectors N` = (0, n̂`), one can write the Gram
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Figure 6. A one-dimension lower representation of a flat, a spherical, and a hyperbolic tetrahedron as embedded in
E3

U ⊂ R
4, S3

u ⊂ R
4, and H3

u ⊂ R
4, respectively. The lower picture shows a section of the hyperbolic case to highlight the

Lorentzian representation used for the hyperboloid.

matrix in terms of the 4×4 matrix N whose components are Nµ
`, we denote the component index with greek

letters ranging from 1 to 4, and:

det Gram(flat) ≡ det NT N = (det N)2 = 0. (4.3)

The last equality follows from the obvious fact that the N` are not linearly independent, since they are just
four 3-vectors in disguise. Nonetheless, these 4-vectors have a useful geometric interpretation; imagine the
tetrahedron as embedded in the model space E3

U ⊂ R
4 orthogonal to the 4-vector U := (1, 0, 0, 0). Then, each

N` is the 4-normal to another hyper-plane in R4 that picks out a face of the tetrahedron when it intersects
E3

U orthogonally. This is depicted in one lower dimension in Figure 6, where it is also clear that the (cosine
of the) hyper-dihedral angle δµνN

µ
` Nν

m is equal to the (cosine of the) tetrahedron’s dihedral angle θ`m. Note
that in this case, using the Euclidean (δµν) or Lorentzian metric (ηµν = diag(−1, 1, 1, 1)) does not make any
difference, since N0

` = 0. This reflects the fact that the flat case is a degenerate version of both the spherical
and hyperbolic geometries.

In the spherical case, one embeds the tetrahedron into the unit sphere S3
u ⊂ R

4. The `-th face of the
curved tetrahedron will then lie on a great 2-sphere of S3

u identified by the intersection of the unit sphere
with a hyper-plane passing through the origin of R4 and orthogonal to the 4-vector N` (we use the same
symbol as in the flat case). Once more, the (cosine of the) hyper-dihedral angle δµνN

µ
` Nν

m is equal to the
(cosine of the) dihedral angle θ`m between the faces ` and m of the tetrahedron (provided orientations are
chosen consistently). This fact gives the relation

Gram(sph)
`m = δµνN

µ
` Nν

m , (4.4)

from which it follows

det Gram(sph) = (det N)2 > 0, (4.5)
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where the zero value has been excluded because it would correspond to a degenerate tetrahedron, which we
will not treat here.

The easiest way to understand the hyperbolic case (see Figure 6), is in terms of a “Wick rotation” of the
spherical one. One obtains

Gram(hyp)
`m = ηµνN

µ
` Nν

m , (4.6)

from which it follows

det Gram(hyp) = (det η)(det N)2 < 0, (4.7)

since det η = −1. Here too, the zero value has been excluded because it corresponds to degenerate cases.
The new metric is needed because the Euclidean normals to the planes that intersect the unit hyperboloid
H3

u ⊂ R
4 are not tangent to the hyperboloid at the points of contact, and therefore the Euclidean scalar

product between these normals does not reproduce the tetrahedron’s Gram matrix. Related to this, there is
the fact that the hyperboloid of Figure 6 has negative curvature only when calculated within the Lorentzian
metric (time direction pointing upwards in the figure).

Interestingly, there is a direct way to calculate the sign of the determinant of the Gram matrix just in
terms of the holonomies O` and the choice of a special edge. We are free to choose the special vertex 4 of the
curved tetrahedron to be located at the north pôle of S3

u (or of H3
u, respectively), in which case N` = (0, n̂`)

for ` ∈ {1, 2, 3}, where the n̂` are determined up to a global sign by the procedure discussed in the previous
section. The last three components of N4 are then completely determined by the equations

cos θ4` = Gram4` = gµνN
µ
4 Nν

` = δi jN i
4N j

` , with ` , 4 , (4.8)

where cos θ4` is given by Eq. (2.13) and gµν can be either δµν or ηµν. Explicitly:

N i
4 =

1
(n̂1 × n̂2) · n̂3

î
cos θ41 n̂2 × n̂3 + cos θ42 n̂3 × n̂1 + cos θ43 n̂1 × n̂2

ó
. (4.9)

Hence, by using the condition that N4 must be of unit norm, in either the Euclidean or the Lorentzian metric,
it is easy to realize that the sign of the determinant of the Gram matrix is given by

sgn det Gram = sgn
Ä

1 − δi jN i
4N j

4

ä
. (4.10)

Now that we have been able to determine a priori the nature of the curved tetrahedron, we can run
the correct form of the reconstruction according to whether the holonomies turn out to be associated with
a non-degenerate spherical (det Gram > 0) or hyperbolic (det Gram < 0) geometry. If det Gram = 0, our
equations should be interpreted as some sort of degenerate spherical or hyperbolic geometry, which we do
not attempt to reconstruct. Indeed, they cannot correspond to a flat tetrahedron, because in that case all
holonomies should be trivial, irregardless of the shape of the tetrahedron!

In conclusion notice that one can attempt to reverse the logic presented here, by taking the four hyper-
planes identified by the N` as the primitive variables, instead of the tetrahedron. Doing so, the above con-
struction identifies in the spherical case not one but 16 different tetrahedra on S3

u, with antipodal pairs con-
gruent.3 The way we have defined the Gram matrix picks out only one of these tetrahedra, the one for which
all four normals induced by the N` are outgoing. Choosing one among these 16 tetrahedra is somewhat anal-
ogous to fixing the signs of the four triple products discussed in the previous section. Also, it is interesting
to note that in the flat case this multiplicity does not appear, provided the tetrahedra “opened up towards
infinity” are disallowed. What about the hyperbolic case? On the (one sheeted-)hyperbolid the situation is
analogous to the flat case; however, by looking at the hyperboloid as a sort of analytical continuation—we
do not intend to be precise about this claim—of the sphere, one might expect to find again a remnant of the

3To visualize this, it is easier to think of a 2-sphere cut by three planes passing through its center: it gets subdivided into 8 triangles.
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16-fold multiplicity. A moment of reflection shows that the tetrahedra crossing the equator in the spherical
case are “broken up” into two pieces, both extending to infinity, and contained in the two seperate sheets
of the two-sheeted hyperboloid. In the next section we shall see why these two-sheeted tetrahedra are of
interest for the curved reconstruction theorem.

5 Two-sheeted hyperbolic tetrahedra

A well-known result, easily deduced from the Gauß-Bonnet theorem, is that the area of an hyperbolic triangle
cannot be larger than π and is given by a = π−

∑3
n=1 αn ≤ π, where αn are the triangle’s internal angles. (We

use a throughout for triangle areas and rely on context to distinguish the geometry as spherical, hyperbolic or
Euclidean.) The bound is saturated by ideal triangles, i.e. triangles with vertices “at infinity”. Nonetheless,
an SO(3) element representing a rotation around some fixed oriented axis is generally between 0 and 2π,
which means that the areas encoded in the holonomies O` generally range over these values. Spherical
triangles achieve this full range of areas, but standard hyperbolic triangles do not. Is there something forcing
the areas to be smaller than π when the determinant of the Gram matrix, seen as a function of the four
holonomies, is negative? It is not hard to find examples showing that there is not. Consequently, we need to
make sense of hyperbolic tetrahedra with face “areas” in the full range (0, 2π). Inspired by the observations
at the end of the previous section, we look to use triangles stretching across the two sheets. The aim of this
section is to describe these new two-sheeted hyperbolic triangles and tetrahedra.

We start with the 2-dimensional triangles. In Figures 7 and 8 we have illustrated what we mean by
a two-sheeted triangle, and how to orient them. The key idea, is to use the planes passing through the
origin of the embedding space R3 to extend the geodesics beyond infinity to the other sheet, and to use the
natural orientation of the hyperbolae provided by Lorentz boosts which is also consistent with the orientation
induced by that of the planes. Figures 7 and 8 represent a two-dimensional hyperbolic geometry, and hence
the geometry of the faces of a hyperbolic tetrahedron. In three dimensions, the Beltrami-Klein disk model
becomes a three-ball model, in which the two-dimensional hyperboloids where the faces of the tetrahedron
lie are mapped onto flat disks inscribed in the three-ball; it is one of these that is pictured.

The area of a two-sheeted triangle, however, is not just larger than π, it is actually infinite. Nonethe-
less, what appears implicitly in the closure equation is not the area of the triangle, but the total deficit angle
perceived by an observer going around it. In an homogeneously curved geometry this happens to be propor-
tional to the area. Therefore, by defining a notion of holonomy around a two-sheeted triangle, we effectively
provide a notion of “renormalized” area for these triangles. At the end of this section, we briefly comment
on how far this idea can be pushed.

In order to define a holonomy around a two-sheeted triangle, it is enough to give a prescription for the
parallel transport through infinity from one sheet to the other. In other words, one needs to identify the
tangent spaces at the point P and P′ on the boundaries of the two Poincaré or Beltrami-Klein disks, or balls
in three dimensions. However, given a geodesics and its extension to the other sheet, there is a very natural
prescription for the identification of the aforementioned tangent spaces (see the left columns in each panel
of Figure 9, as well as Figure 7).

This requires that: (i) the velocity vector along the a geodesic going out to infinity is identified with
the incoming velocity vector on the geodesic’s continuation, (ii) the vector normal to the outgoing geodesic
and pointing towards the interior of a two-sheeted triangle is identified with the only vector with both these
properties at the entering point of the incoming geodesics on the other sheet. The second requirement
simply preserves the notions of in and outside. In the embedded picture, it requires the vector normal to the
geodesic to lie on the same side of the hyperplane defining the geodesic itself. Notice that by orienting the
normals to the upper and lower sheets as future and past pointing respectively, the three-dimensional frame
composed by the velocity, the normal vector to hyperplane, and the normal to the hyperboloid preserves
its orientation thanks to this requirement. This construction can be generalized to the three-dimensional
two-sheeted hyperboloid, by considering the normals to the flatly embedded surfaces defining the faces of
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Figure 7. The two-sheeted hyperboloid and triangle. Left A plane passing through the origin of the embedding space
R3 (light gray) intersects the hyperboloid along two geodesics. The dark gray disk gives the Beltrami-Klein model of
2-dimensional hyperbolic space. Geodesics on the hyperboloid are mapped onto straight lines of the Beltrami-Klein disk
(dashed lines). In contrast to the Poincaré disk model, the Beltrami-Klein model does not preserve angles. Center and
Right In dark grey, a two-sheeted triangle. The right-most figure shows the two Beltrami-Klein disks as seen from the
origin of R4, therefore a positively oriented triangle has a right-handed down-ward pointing orientation with respect to
the plane of the page. The central, one-sheeted triangle in the lower sheet is shaded for future reference.

Figure 8. Another representation of a two-sheeted triangle. In the central image the shape of the actual hyperbolic
triangle is highlighted. On the sides we represent the triangle in both the Poicaré and Beltrami-Klein models. The
Poincaré model has the virtue of preserving angles, while the Beltrami-Klein models represents geodesics via straight
lines and is easily recovered via the intersecting-plane construction shown in the previous picture.

– 15 –



Figure 9. The identification across the two sheets of boundary points along the same geodesics. The right column of
each panel shows what happens when Q, belonging to a different geodesics, is let “collapse” onto P: the point P has to be
identified with two different points according to which geodesics they belong to. In this sense, one is not allowed to think
of “gluing” the two discs together to perform the identification. The arrows, show how a frame is parallel transported
across the two disks. Arrow 2 represents the projection onto the disk of a normal to the plane of Figure 7.

the two-sheeted tetrahedron instead of the normal to the geodesic arcs defining the sides of the two sheeted
triangles.

Does the identification of P and P′ and their tangent spaces obtained while moving along a given
geodesic induce an identification of the boundaries of the two Beltrami-Klein disks (balls)? No. The reason
is shown in the right columns of each panel of Figure 9: a point P on the upper sheet is identified with dif-
ferent points on the lower sheet depending on the geodesics through which the point is reached. Therefore,
specializing to the relevant 3-dimensional case, the parallel transport prescription we give, instead of iden-
tifying the boundaries of the two balls ∂BK3

Upper and ∂BK3
Lower, provides a 1-to-1 map between the spaces

∂BKUpper × S2 and ∂BKLower × S2. Here S2 labels the space of geodesics based at a point on ∂BKUpper,Lower.
Having fixed the parallel transport prescription, finding the holonomy around a triangle is just a matter

of calculation. A particularly simple way to find the holonomy in the standard case is to note that the
parallel transport along a geodesic is trivial, and the only non-trivial contributions come from the “kinks”
at the vertices of the triangle. Pleasantly, this remains true here because nothing happens when parallel
transporting a frame across the two sheets. If the triangle lies completely within one sheet (or on the surface
of a sphere) each kink contributes to the final holonomy with a rotation (around the normal to the surface)
through an angle −α̃, where α̃ is the angle between the velocity vectors before and after the kink. After
circuiting a triangle the total rotation amounts to −

(
3π −

∑3
n=1 αn

)
, with αn = π − α̃n being the internal

angles of the triangle. Then, in the case of a spherical triangle we simply obtain its area (modulo 2π) a =(∑3
n=1 αn − π

)
. Similarly, for a one-sheeted hyperbolic triangle, we obtain (again modulo 2π) minus its area

a1s =
(
π −

∑3
n=1 αn

)
. However, if the triangle is hyperbolic and two-sheeted, we define its “renormalized”

area through the parallel transport prescription we just outlined, obtaining the formula:

a2s := 3π −
3∑

n=1

αn . (5.1)

To avoid confusion, we will call a2s the holonomy area of the two-sheeted triangle. This area is in the range
a2s ∈ (0, 2π). To show this note that the internal angles of the two-sheeted triangle are related to those of the
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unique (up to congruence) one-sheeted triangle identified by continuing its geodesic sides, see the rightmost,
lower panel of Figure 7, where the relevant one sheeted triangle is dashed. Calling the angles of the latter
triangle α, β, and γ, where γ is the only angle the two triangles have in common, and its area a1s, one finds:

a2s = 3π − (π − α) − (π − β) − γ = π + α + β − γ

= 2π − a1s − 2γ < 2π (5.2)

= a1s + 2α + 2β > 0 .

The same result could have been obtained by using the simple observation that the holonomy area of a
(necessarily two-sheeted) hyperbolic lune of width γ is ahyp.lune = 2π − 2γ (to be compared to the spherical
case: asph.lune = 2γ). We observe that the holonomy areas only make sense modulo 2π, and can only be
calculated for regions whose boundaries are arbitrarily well approximated by piecewise geodesics lines.
Consequently, it is not possible to make sense of the holonomy area of a full hyperbolic sheet, and the
total area of the two sheets is zero, since it is “enclosed” by the trivial loop. Nonetheless, given that the
starting point of our reconstruction theorem are the holonomies themselves, and not arbitrary regions of the
two-sheeted hyperboloid, these definitions are appropriate and useful.

The generalization of this construction to higher dimensions, and in particular to two-sheeted tetrahedra,
is straightforward: these tetrahedra are regions of the two-sheeted 3-hyperboloid identified by four points
on it, the vertices, and delimited by the intersections of the hyperboloid with the hyperplanes generated by
triplets of vertex 4-vectors. Note that to completely characterize the tetrahedron, one has to specify the
orientations of the planes.

6 Curved Minkowski Theorem for tetrahedra

Now that the geometric picture has been clarified, we can state and finally prove the curved Minkowski
theorem for tetrahedra. When we want to emphasize that the Gram matrix can be caclulated directly from
the holonomies {O`}, e.g. using Eq. (2.20b) and related expressions, we write Gram(O`).

Theorem 1. Four SO(3) group elements O`, ` = 1, . . . , 4 satisfying the closure equation O4O3O2O1 = e,
can be used to reconstruct a unique generalized (i.e. possibly two-sheeted in the hyperbolic case) constantly-
curved convex tetrahedron, provided:

(i) the {O`} are interpreted as the Levi-Civita holonomies around the faces of the tetrahedron,

(ii) the path followed around the faces is of the so-called “simple” type (see section 2), and has been
uniquely fixed by the choice of one of the two couples of faces (24) or (13),

(iii) the orientation of the tetrahedron is fixed and agrees with that of the paths used to calculate the
holonomies,

(iv) the non-degeneracy condition det Gram(O`) , 0 is satisfied.

The uniqueness is understood to be modulo isometries.

In particular, condition (i) means that the O`’s written in the form exp
¶
±a`n̂` · ~J

©
have the following

geometrical interpretation: (1) the a` are the areas of the faces of the tetrahedron (possibly interpreted as
holonomy areas), and (2) the n̂` are the outward pointing normals to these faces when parallel transported
(along the simple path chosen) to a common reference frame. Also, it turns out that: (3) the tetrahedron has
positive (negative) curvature if det Gram(O`) > 0 (det Gram(O`) < 0, respectively); (4) the tetrahedron is
double-sheeted if it has a negative curvature and the cofactors of the Gram matrix do not agree in sign. The
proof is an extension of the formalism appearing at Eq. (6.6) below.
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Observe that the four conditions to be satisfied for the theorem to hold have distinct characters: condition
(i) is key to the theorem, it allows its geometric interpretation; condition (iii) is simply needed to avoid
the possibility of reconstructing the parity reversed tetrahedron as well; condition (iv) is technical and,
unfortunately, can be cumbersome from the point of view of the holonomies, since the Gram matrix is a nice
object geometrically speaking, but not as simple algebraically; finally, condition (ii) has a somewhat strange
status. Indeed, a condition of this type is certainly needed to take care of the parallel transport ambiguities
present in the curved setting, but at the same time the specific form we are employing looks quite arbitrary—
even if inspired by a simplicity criterion—and in principle can be modified to other choices of paths, which
would, in turn, require a few somewhat obvious modifications in the reconstruction procedure. The simple-
path condition naturally arises in the four-dimensional context of [31].

Before giving the proof of the main theorem we give a short proof of a useful lemma:

Lemma 1. The principal minors of Gram are positive, with the exception of the 4×4 minor in the hyperbolic
case.

Proof. The 1 × 1 principal minors are immediate, since each is equal to 1. The 2 × 2 minors are also easily
seen to be positive since they are equal to (1− cos2 θ`m), for the appropriate choice of indices (`,m). Finally,
to show that also the 3 × 3 minors are all positive, consider first the case of the principal minor m4 equal to
the determinant of the matrix obtained by erasing row and column 4 from Gram:

m4 = det
Ä

n̂`.n̂m

ä
=

[
det
(

n̂1

∣∣∣n̂2

∣∣∣n̂3

)]2
(6.1)

where the unit vectors n̂` are those appearing in Eqs. (2.3) and (3.1) (with signs fixed by the triple product
criterion),4 and the matrix appearing at the furthest right is the matrix which has the three 3-vectors n̂` as
columns. In light of this formula m4 is trivially positive. The same holds for m2. A little more effort is
needed to prove that m1 and m3 are also positive. Explicitly:

m3 = det

Ñ
1 n̂1.n̂2 n̂1.n̂4

1 n̂2.O1n̂4

SYM 1

é
=

[
det
(

n̂1

∣∣∣n̂2

∣∣∣O1n̂4

)]2
, (6.2)

where in the first equality we used the definition of Eq. (2.13), which takes into account the parallel transport
of n̂4 to vertex 4 along the special edge; while in the second we made use of the fact that O1n̂1 = n̂1, and
therefore n̂1.n̂4 = n̂1.O1n̂4. Therefore, m3 is positive. It can be shown that m1 is positive by a very similar
argument. �

The proof of the theorem proceeds in a completely constructive way, and without loss of generality, it
is performed within the explicit choice of edge (24) being the special one. Most of the steps necessary for
the reconstruction were explained in great detail in section 2, and will not be discussed again. Our attention
is focused on the well-definedness and unambiguous statement of each step of the reconstruction. We will
also prove the consistency of the reconstruction procedure. Therefore the theorem is subdivided into two
parts: in the first, we show that the O` uniquely identify a Gram matrix that, in turn, is associated to a unique
curved tetrahedron; in the second part we show that the Levi-Civita holonomies around the four faces of
the tetrahedron are necessarily given by the O` themselves. Loosely speaking, in the first part we extract
from the closure relation and the simple-path condition the dihedral angles of a tetrahedron which uniquely
determine it, and in the second we verify that the areas of the reconstructed tetrahedron are necessarily the
same as those encoded in the initial group elements O`.

Proof.
Part one First, calculate the triple products appearing in Eq. (2.16) using the group elements via Eq. (2.20c)

4In the hyperbolic case, the triple product criterion described at the beginning of Theorem 1 gives the n̂` signs opposite to the
geometric ones. However, the Gram matrix is unaffected by this global change in sign.
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(properly generalized in the way discussed in the first section for {`,m, q} = {1, 2, 4} or {2, 3, 4}), and fix the
signs ±` appearing there by requiring these four triple products to be positive (note that there is only one
such choice). Geometrically, this completely fixes the signs of the normals by imposing the convexity of the
tetrahedron.5 This allows the unambiguous specification of the entries of the (putative) Gram matrix

Gram`m := cos θ`m for ` , m, and Gram`` = 1 , (6.3)

with the right-hand side of the first equation being calculated via Eq. (2.20b) and its generalization for
{`,m} = {2, 4}. We stress that Gram is a function of the O`’s only. Now,

either sgn det Gram > 0 , or sgn det Gram < 0 , (6.4)

since the null case has been excluded by hypothesis. Define the 4 × 4 matrix g = diag(sgn det Gram, 1, 1, 1),
to be interpreted as the metric of the four-dimensional embedding space as described in section 4. Then,
there exist four 4-vectors N` such that

Gram`m =
∑
µ,ν

gµνN
µ
` Nν

m, (6.5)

or more symbolically Gram = NT gN. In particular, gµνN
µ
` Nν

` = 1, and the four 4-vectors N` can be inter-
preted geometrically as the oriented unit normals to the hyperplanes passing through the origin of R4 which,
upon intersection with the the unit sphere S3

u ⊂ R
4 (unit two-sheeted hyperboloid H3

u, respectively), iden-
tify the great spheres (great hyperboloid, respectively) bounding the tetrahedron itself. See the figures and
discussion of section 4.

The vertices of the tetrahedron are located along the intersections of the triplets of hyperplanes normal
to the N`. Hence the matrix W := −(N−1)T has columns W` proportional to the 4-vectors identifying the
vertices of the tetrahedron (the minus sign in this formula fixes the correct sign of the vertex vectors). We
define V` := W`/

√
|(W`)T gW` |. In the spherical case, the vertex vectors V` completely characterize the

tetrahedron; they identify four points on the unit sphere S3
u that can be connected by the shortest geodesic

segments between them. However, in the hyperbolic case it is not a priori clear that the V` intersect the
two-sheeted unit hyperboloid H3

u. Indeed, for them to do so, they must be timelike, that is they must satisfy
VT
` ηV` = −1. However, this is equivalent to the condition WT

` ηW` < 0, which in turn must be true because
of the following relations and the result of Lemma 1 (which states m` > 0 for all `):

(W`)T ηW` =
(
WTηW

)
``

=
Ä(

NTηN
)−1ä

``
=
(
Gram−1)

``
= (det Gram)−1m` < 0, (6.6)

where, recall, m` is the principal minor obtained by erasing row and column 4 from Gram. To obtain the
last equality, the fact is used that being a diagonal minor, m` is also equal to the (`, `)-th cofactor of Gram.
Therefore, we can conclude that also in the hyperbolic case a unique generalized (i.e. possibly two-sheeted)
tetrahedron can be identified. It suffices to define the “shortest” geodesic between two vertices as the gen-
eralized geodesic (i.e. possibly going through infinity) that does not pass through any point defined by the
intersection of the hyperboloid and three of the four hyperplanes normals to the {N`} other than its initial and
final points. This concludes the first part of the proof.

Part two The group elements O` and closure relation Eq. (2.2) specify more data than the Gram matrix
alone. Thus, we have to verify the consistency of all of this data. Indeed, the construction from part one
guarantees only that the dihedral angles of the reconstructed tetrahedron are compatible with the holonomy
group elements O`, but not that the reconstructed areas also match those encoded in the O`. More specifically,
we have claimed that the O` can be interpreted as holonomies of the Levi-Civita connection around the

5Note that the so reconstructed normals would turn out to have the opposite sign with respect to the geometric ones in the hyperbolic
case. This global flip in the sign of the normals does not compromise any of the following steps.
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various faces of the tetrahedron, and this implies (see section 2 and section 5) that the rotation angles of the
O` are the areas of the faces of the tetrahedron. We now prove this claim.

Given the reconstructed tetrahedron, one can explicitly calculate the holonomies along the specific sim-
ple path on its 1-skeleton used in the reconstruction. Call these the reconstructed holonomies, Õ`. Although
they satisfy Õ4Õ3Õ2Õ1 = e, and their 4-normals satisfy Ñ` = N` by construction, it is not yet clear whether
the Õ` are necessarily equal to the O` (up to global conjugation, i.e. gauge). Demonstrating this is what we
mean by showing consistency of the reconstruction. We once more proceed constructively, and show that
both ˜̂n` = n̂` and ã` = a`, in the notation of Eqs. (2.3) and (3.1). We will show that the Gram matrix and
the closure equation contain all the information needed to completely fix the Õ`. Because the Õ` and the O`

have the same Gram matrix we will briefly drop the distinction and omit the tildes.
First align ˜̂n3 with n̂3 by acting with a global rotation (conjugation). A second global rotation around the

n̂3-axis can be used to align ˜̂n1 with n̂1; this is always possible because ˜̂n1.˜̂n3 = flGram13 = Gram13 = n̂1.n̂3.
Now the system is completely gauge-fixed and there is no further freedom to rotate the vectors. The vector
n̂2 has a fixed angle with both n̂1 and n̂3, determined by Gram12 and Gram23, and there are a priori at most
two vectors with this property (identified by the intersection of two cones around n̂1 and n̂3, respectively).
However, only one of those satisfies the additional requirement that (n̂1 × n̂2).n̂3 > 0, which was crucially
used in the reconstruction.6 Similarly, n̂4 is also uniquely determined. All that remains then is to show that
the entries of the Gram matrix completely fix the areas.

Consider Gram24 = n̂2.O1n̂4. Since n̂1, n̂2, and n̂4 are all given, there exists at most two values of a1 (in
the interval (0, 2π)) that solve this equation (geometrically this is again the intersection of two cones). The
triple product condition (n̂2 × n̂1).O1n̂4 > 0 singles out one of these two solutions. Similarly, one fixes a3 by
using the analogous expression Gram24 = n̂2.O−1

3 n̂4 and (n̂3 × n̂2).O−1
3 n̂4 > 0. To conclude, we need to show

that a2 and a4 are completely determined.
Consider the closure equation O′4O′3O′2O′1 ≡ (O−1

3 O4O3)O2O1O3 = e, where we identify O′4 ≡ O−1
3 O4O3,

O′3 ≡ O2, and so on. We have completely fixed O1 and O3, as well as n2 and n4. The remaining unknowns are
a2 and a4. In the language of the new closure one needs only determine a′3 and a′4. The Gram matrix of the
new closure is the same as the previous one if edge (24)′ is selected as the new special edge, and is therefore
completely known. Following the same construction then we can fix a′1 and a′3, but these are respectively
the same as a3 and a2. Therefore we have fixed a2.7 Now that only one variable is left, an explicit use of the
closure equation clearly fixes it uniquely, by giving explicit expressions for both cos a4 and sin a4. �

Note that in the second part of the theorem, the spherical and the hyperbolic cases (even the two-sheeted
one) are treated uniformly. In fact, once the details of the reconstructed tetrahedron are given, one only
needs a parallel transport rule (and a path) to write down a closure equation and associate it to a Gram
matrix consistent with the reconstruction. This works straightforwardly in each of the cases.

Part II

Phase space of shapes
7 Curved tetrahedra, spherical polygons, and flat connections on a punctured sphere

In the first part of this paper, we have shown how four SU(2) holonomies satisfying a closure constraint
(and a non-degeneracy condition) give rise to the geometry of a curved tetrahedron embedded in either S3

or H3. This closure admits at least two other interpretations: the non-trivial holonomies of a flat connection
on a quadruply punctured 2-sphere satisfy such a closure; and this constraint can also be associated to the

6Notice, that existence in not in question, since it is guaranteed by construction. Only uniqueness needs an argument.
7Again we do not discuss existence of these solutions, only their uniqueness, since existence was covered in the proof’s first part.
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four sides of a geodesic polygon embedded in S3 � SU(2). The flat-connection viewpoint is important, has
attracted much attention in the literature, and is closely connected to the motivations for our work (see [31]).

The moduli space of flat connections on a punctured Riemann surface has a natural phase-space struc-
ture [6, 30, 33] that can be deduced, for example, via gauge-theoretic arguments. In this framework the final,
finite-dimensional phase space is obtained after a reduction by the infinite-dimensional gauge symmetries
of the initial theory. A completely finite-dimensional approach to the problem was put forward by Anton
Alekseev, Yvette Kosmann-Schwarzbach, Anton Malkin, and Eckhard Meinrenken [1–3], who built gener-
alized phase-space structures associated to each puncture and handle of the Riemann surface. These spaces
are then “fused” together in order to obtain the usual phase-space structure, after a further reduction by a
global topological constraint. These generalized structures are well adapted to the polygonal interpretation
of the closure constraint, and allow the association of a natural phase-space to the polygons in S3 of fixed
side lengths. This was the content of the work of Thomas Treloar [50], who generalized the previous con-
structions of phase spaces of polygons on E3 [35] and H3 [36] to the compact space S3. The novelty of the
work of Alekseev and collaborators, which is reflected in the spherical-polygon case, is the fact that one is
forced to abandon Poisson structures and to step into the realm of quasi-Poisson structures, for which the
Jacobi identity is violated by a specific term.

The violation of the Jacobi identity is quite a drastic change, but it cannot be avoided if you are to in-
troduce genuinely group-valued moment maps [1–3]. Indeed, in Alekseev and collaborators’ framework the
topological (closure) constraint is equivalent to fixing the total, group-valued momentum of the system to the
identity; this is closely analogous to the standard procedure of setting the relevant algebra-valued momentum
to vanish when it generates gauge transformations. In this language, the generalized closure constraint is
better understood as a deformation of the Gauß constraint of gauge theories, see also the discussion of spin-
networks in sections 1 and 12. Interestingly, the violation of the Jacobi identity becomes irrelevant after the
reduction to the gauge invariant space is performed.

We believe these fundamental ideas about symmetry may provide an important qualitative shift in think-
ing about the cosmological constant in physics [31]. So, in this part of the paper we present this material as
constructively and intuitively as we can and whenever possible connect the mathematical formalism to the
physicists’ language. Our focus will be on the tetrahedral interpretation of the closure constraint, which is a
novel feature of our work, and hence many considerations specific to this interpretation will be put forward.
In particular, our interpretation of the phase space we construct is in terms of a phase space of shapes for
curved tetrahedra.

A peculiar feature of our construction, seemingly coincidental, is that for SU(2) it happens that the
Jacobi identity is actually satisfied also at the level of a single puncture’s generalized phase space.

8 Quasi-Poisson structure on SU(2)

Before considering the phase space of curved tetrahedra, we start with the simpler problem of defining a
quasi-Poisson structure for each face. This is analogous to the construction of the phase-space structure on
the moduli space of flat connections on a punctured sphere out of the quasi-Poisson structures associated to
each puncture.

As mentioned in section 1, an important feature of Minkowski’s construction in the flat case is that the
closure constraint is also the generator of gauge transformations at each node of the spin network, i.e. it is the
generator of rotations in the tetrahedral picture. In particular, each flux generates rotations of the associated
face vector. We want to reproduce this feature with the curved tetrahedra. To do so we need to formalize the
flat case.
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Review of the flat case: The group SU(2) acts on a three-vector ~a ∈ R3 via its vectorial (spin 1) represen-
tation. This action can be cast as a Hamiltonian action generated by the three-vectors:

{ai, f (~a)} =
d
dt

f
Ä

e−tJi
~a
ä ∣∣

t=0 (8.1)

for any function f : R3 → R. Because (Ji)l
k = −ε il

k, one immediately finds

{ai, f (~a)} = ε il
kak ∂

∂al f
(
~a
)

or {ai, ·} = ε il
kak ∂

∂al . (8.2)

Applying this to the function f (~a) = a j yields

{ai, a j} = ε
i j

kak. (8.3)

However, it is useful to explore this result from a slightly different perspective. Identify R3 with the dual
su(2)∗ of the Lie algebra su(2), via ~a 7→ α := ~a.~η, where ηi ∈ su(2)∗ is dual to the basis τi ∈ su(2):

〈ηi, τ j〉 = δi
j , where [τi, τ j] = ε

k
i j τk. (8.4)

The action of SU(2) on R3 is mapped into the coadjoint action of SU(2) on su(2)∗:

αG := (G . ~a).~η = ~a.(Ad∗G−1~η) = Ad∗G−1α. (8.5)

The vector field ysu(2)∗ associated to an infinitesimal transformation is

ysu(2)∗ = 〈−ad∗yα, ∂α〉 = 〈α, ady∂α〉 = 〈α, [y, τl]〉
∂

∂al
= ε k

il yiak
∂

∂al
(8.6)

where y ∈ su(2) is the infinitesimal version of G, and ∂α := τl
∂
∂al

is an su(2)-valued vector field on su(2)∗.
Hence the Poisson brackets on R3 that we wrote above can be now interpreted as Poisson brackets on su(2)∗:

{〈α, y〉, ·} = ysu(2)∗ . (8.7)

The meaning of this equation is that the function 〈α, y〉 on su(2)∗ is the Hamiltonian generator of the coadjoint
action in the direction of y ∈ su(2) on the space su(2)∗.

Notice that in the latter approach the fact is put to the forefront that the dual g∗ of a Lie algebra g carries a
canonical Poisson structure induced by the Lie brackets on g itself. This is a classical result due to Alexandr
A. Kirillov and Bertram Kostant [37, 38].

We introduce some useful nomenclature and notation. Define the Poisson bivector

P = Pi j

Å
∂

∂ai
⊗

∂

∂a j
−

∂

∂a j
⊗

∂

∂ai

ã
(8.8)

so that

P(d f , dg) := ι(P)(d f ⊗ dg) := { f , g} ∀ f , g ∈ C1(su(2)∗,R), (8.9)

where ι denotes contraction. The bivector P can also be interpreted as a map from one-forms to vector fields;
for this it is enough to contract it with a single 1-form. When viewing it as this map we denote it P#:

P# : Ω1(su(2)∗)→ X(su(2)∗) , d f 7→ P#(d f ) such that ι
(
P#(d f )

)
dg = P(d f , dg), (8.10)

where Ωn(M) is the space of n-forms on a manifold M and X(M) is the space of vector fields on M.
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Now we can rewrite Eq. (8.7) as8

P#(d〈α, y〉) = ysu(2)∗ . (8.12)

This formula tests the vector field generated by a linear function 〈α, y〉 of the Hamiltonian generators of the
group action α. The general case is9

P#(d f (α)) =
∂ f
∂ak

(τk)su(2)∗ ∀ f ∈ C1(su(2)∗,R). (8.13)

and will be useful in generalizing to non-linear spaces of Hamiltonian generators.
If we are given a transformation to implement on su(2)∗, the right-hand side of this equation is fixed via

Eq. (8.6), while postulating its Hamiltonian generators (the α themselves) fixes the argument of P#. These
two pieces of information, taken together, fix uniquely the Poisson bivector.

The curved case We now adapt this constructive procedure to the curved case. That is, we will deduce
the appropriate bracket on the space of generalized SU(2) area vectors by postulating both the way they
transform and the generators of this transformation. In analogy to the flat case, the transformation will act by
conjugation and be generated by the SU(2) area vectors. Important modifications to the flat construction are
needed to fully implement this strategy. This will lead us into the subtle realm of quasi-Poisson manifolds.

In the previous sub-section, it was natural to treat the area vectors as elements of su(2)∗. Two steps are
needed in order to promote them to elements of SU(2): identify su(2)∗ with su(2) in a natural way, and then
“exponentiate” the result in some manner.

We use the Killing form on su(2), K(·, ·) to implement the first step. Indeed, for any α ∈ su(2)∗ there
exists a unique xα ∈ su(2) such that

〈α, y〉 = K(xα, y) ∀y ∈ su(2). (8.14)

Normalize K so that K(τi, τ j) = δi j, then Eq. (8.13) is essentially unaltered

P#(d f (x)) =
∂ f
∂xk

(τk)su(2) ∀ f ∈ C1(su(2),R), (8.15)

except that the coadjoint action is mapped into the adjoint action of su(2) on itself:

(τk)su(2) = 〈ηi,−adτk x〉
∂

∂xi . (8.16)

In order to “exponentiate” this result, we need to find a vector field on the group manifod generating the
SU(2)-transformations of the face holonomies, i.e. the analogue of (τk)su(2), and generalize the simple partial
derivative of the function f to an appropriate vector field on the non-linear SU(2) group manifold. The first
task is simple, since conjugation of the SU(2) face holonomies by elements of SU(2) generalizes the adjoint
action of the group on its Lie algebra:

AdH−1 x { ADH−1G := H−1GH. (8.17)

The vector field implementing an infinitesimal transformation is

ysu(2)∗ = 〈ηi,−adyx〉
∂

∂xi { ySU(2) = yL − yR, (8.18)

8Indicating the inverse of P# (possibly after its restriction to an appropriate subspace) by ω[:

d〈α, y〉 = ω[(〈−ad∗yα, ∂α〉) = ι(〈−ad∗yα, ∂α〉)ω, (8.11)

where ω ∈ Ω2. This is a well-known formula in the context of symplectic geometry. In a slightly more general framework it goes under
the name of the moment map condition.

9It is actually immediate to show that this condition is equivalent to the previous one by the linearity of P#. The right hand side of
this equation can be written in a coordinate free way as 〈α, [∂α f , ∂α]〉, where again ∂α = τi

∂
∂ai

is an su(2) valued derivative on su(2)∗.
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where yR,L are respectively the right- and left-invariant vector fields on SU(2), with the value y ∈ su(2) �
TeSU(2) at the identity.

More interesting is generalizing the derivative of the function f in the direction associated to a basis
element τk of the Lie algebra. There is no unique, natural derivative (vector field) on the group SU(2)
associated with the direction τk. This is because the group is non-Abelian and hence non-linear. In particular,
derivatives in any direction y can be associated to either left or right translations on the group, translating
along yR and yL, respectively. So, what is the appropriate combination ŷ of these two derivatives? Both
yR and yL reduce to the usual derivation in the flat (Abelian) limit. Interestingly, the antisymmetry of the
Poisson bivector P fixes this ambiguity, selecting ŷ = 1

2 (yL + yR). Indeed, suppose ŷ = AyL + ByR, with
A + B = 1 to assure the correct flat limit. Then for all functions f :

0 ≡ P(d f ⊗ d f ) = P#(d f )(d f ) =
∑

k

(“τk f
)(

(τk)SU(2) f
)

=
∑

k

[
A(τk)L ⊗ (τk)L − B(τk)R ⊗ (τk)R] (d f ⊗ d f ) + (B − A)

[
(τk)L f · (τk)R f

]
= (A − B)

{∑
k

(τk)L f ·
[
(τk)L f − (τk)R f

]}
=⇒ A = B =

1
2
, (8.19)

where we used the identity
∑

k(τk)L ⊗ (τk)L =
∑

k(τk)R ⊗ (τk)R.

Thus, we have obtained the following condition on the quasi-Poisson bivector P on SU(2):

P#(d f ) =
1
2
[(

(τk)L + (τk)R) f
]

(τk)SU(2) ∀ f ∈ C1(SU(2),R). (8.20)

An equivalent condition, analogous to Eq. (8.13), does not explicitly rely on a basis of su(2). To display this
form, we need to introduce the Maurer-Cartan forms of SU(2). These are 1-forms θL,R with values in the Lie
algebra su(2) defined by the equations ι(xL,R)θL,R = x, ∀x ∈ su(2). More conveniently, they can be written
(with matrix groups in mind) as

θL
∣∣

H = H−1dH θR
∣∣

H = dHH−1. (8.21)

Using these formulas we can check that d f =
[
(τk)L,R f

]
θL,R

k , where θL,R = τkθ
L,R
k . Then, by using the identity

xL = (AdH x)R, and substituting y =
[
(τk)R f

]
τk ∈ su(2), we obtain:10

P#(K(y, θR
∣∣

H)
)

=
1
2
[
(1 + AdH−1 )y

]
SU(2) ∀y ∈ su(2). (8.22)

From this equation and the non-degeneracy of the Maurer-Cartan forms, it is clear that the quasi-Poisson
bivector P has a kernel when (1 + AdH−1 ) is non-invertible. In the case of SU(2) this is when H has the form
exp(πn̂.~τ). We will return to this observation briefly.

In order to obtain a completely explicit formula for P, we coordinatize the group SU(2). Coordinates on
the Lie algebra are natural and allow comparison with the flat case, in particular, making the flat limit easy
to evaluate, so we use the {ai}3i=1 as coordinates. In the fundamental representation

H = exp~a.~τ = cos
a
2

1 − i sin
a
2

n̂.~σ (8.23)

and convenient intermediate quantities are

tH := Tr(H) = 2 cos
a
2

and ~NH := Tr(H~τ) = − sin
a
2

n̂ . (8.24)

10Note that (τk)L f = (AdHτk)R f = (AdHτk)i(τi)R f = (AdH−1τi)k(τi)R f = [AdH−1 y]k .
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By inserting f (H) = tH in Eq. (8.20), we obtain

P#(dtH) = Tr(Hτk)(τk)SU(2) = − sin a
2 nk(τk)SU(2). (8.25)

Now, observe that the action by conjugation of the group on itself exponentiates naturally, becoming an
action by conjugation at the level of the Lie algebra. Therefore, the infinitesimal version of the action
exp (aG)kτk =: HG := GHG−1 = exp~a.AdG~τ is, in our coordinates,

(aG) j = aiK(τ j,AdGτi) { ySU(2)a j = aiK(τ j, adyτi) = aiykε jki, (8.26)

and thus

ySU(2) = aiykεi jk
∂

∂a j . (8.27)

Substituting this into the formula for P#(dtH) and using ~a = an̂, one finds

P#(dtH) = sin
a
2

nkaiykεi jk
∂

∂a j ≡ 0 ⇒ P#(da) ≡ 0. (8.28)

This means that P is transverse to the radial coordinate in the coordinate space.
Upon substituting f (H) = N i

H into Eq. (8.20) we find,

P#(dN i
H) = 1

2

[
Tr(Hτkτi) + Tr(τkHτi)

]
(τk)SU(2) = − 1

4 Tr(H)(τi)SU(2) = − 1
2 cos a

2 (τi)SU(2), (8.29)

and from the fact that P#(da) = 0 it is then immediate to deduce

P#(dak) =
a
2

ctg
a
2

aiεi jk
∂

∂a j . (8.30)

This gives, finally, the quasi-Poisson brackets on the group SU(2) in terms of the logarithmic coordinates ak:{
ai, a j}

qP =
a
2

ctg
a
2
ε

i j
kak. (8.31)

This expression manifestly shows that the quasi-Poisson bivector is tangent to and non-degenerate on the
conjugacy classes of SU(2). This generalizes the classical result that coadjoint orbits are the symplectic
leaves of the dual of the Lie algebra equipped with the canonical Kirillov-Kostant Poisson structure. This is
a particular case of a more general statement about foliations of quasi-Poisson manifolds into non-degenerate
leaves invariant under the group action [2].

At this point, one might want to introduce a rescaling of the coordinates ai, to see how the flat limit
appears. Consider a homogeneously curved geometry with radius of curvature r, then

H { rH = exp
~a.~τ
r2 . (8.32)

Since this is formally obtained by sending a 7→ a/r2, Eq. (8.31) for r , 1 is¶
ai, a j

©r

qP
:= r−2

¶
ai, a j

©
qP

=
a

2r2 ctg
a

2r2 ε
i j

kak r→∞
−−−−→ ε

i j
kak + O(r−2). (8.33)

The rescaling of the quasi-Poisson brackets {·, ·}qP 7→ {·, ·}
r
qP := r−2{·, ·}qP makes the limit clean and can be

achieved by a rescaling of the Killing form appearing in the definition of ŷ: K(·, ·) 7→ Kr(·, ·) := r2K(·, ·).
Interpreting the Killing form as a metric on the Lie algebra, this is equivalent to fixing its scale to that of the
geometric S3 (or H3). Notice, however, that this is not a completely obvious feature, since this metric is a
priori used to measure the lengths of area vectors, and not geometrical distances.

The quasi-Poisson structure we have just defined has various interesting features. First of all, even
though the theory of group-valued moment maps that leads to Eq. (8.20) generically gives quasi-Poisson
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brackets that violate the Jacobi identity, in our case this does not happen. This surprise is because of the
choice of group, SU(2), and is probably not too significant; we are still forced to use genuinely quasi-
Poisson spaces. In the next section it will become clear, in particular, that the “fusion” of four face phase-
spaces cannot be performed by simple tensor product, and needs further care. Other examples of this are:
the quasi-symplectic 2-form on the leaves tangent to the quasi-Poisson bivector is not simply given by the
inverse of its restriction; and the formula for the quasi-symplectic volume also needs careful corrections, see
section 10.

9 Phase space of shapes of curved tetrahedra

The goal of this section is to put together the four quasi-Poisson spaces associated to the faces of a curved
tetrahedron, and to subsequently reduce this quasi-Poisson space by the closure constraint H4H3H2H1 = e.
Remarkably, the reduced space obtained by “gluing” multiple quasi-Poisson spaces is eventually a symplectic
space. Indeed, it is the moduli space of flat SU(2)-connections on the four-times punctured sphere equipped
with the symplectic 2-form induced by the Atiyah-Bott 2-form [1, 3]. The “gluing” procedure goes under
the name of fusion, and is more complicated than in the standard case of Lie-algebra-valued moment-map
theory. In the latter context it is enough to juxtapose the two Poisson manifolds each with its Poisson
structure and to consider a total moment map given by the sum of the two moment maps. For examaple, in
angular momentum theory, the total angular momentum is just the sum of the two angular momenta. For
quasi-Poisson manifolds this is no longer possible. The total moment map should be the product of the two
moment maps, and since this operation is non-linear, one is forced to add a term to the total quasi-Poisson
bivector in order to ensure the moment map condition is still satisfied in the fused space; i.e. in order to
ensure that the total momentum generates the same gauge transformation on the two subspaces. In other
words, a twist is needed to convert a non-linear operation (the product of two momenta) into a linear one
(the sum of the two vector fields generating the gauge transformations on each copy of the group). We turn
now to making this statement precise.

Fusion product Consider two copies of the group SU(2), i.e. the total quasi-Poisson space associated
to two faces of the tetrahedron; by assumption, we require the total momentum H2H1 to be the quasi-
Hamiltonian generator of gauge transformations, i.e. rigid rotations, in the total space. (Here we have in
mind that we eventually want the closure constraint H4H3H2H1 = e to generate rigid rotations of the full
tetrahedron.) Let us now be naive and take as a quasi-Poisson bivector on the total space P′ = P1 + P2,
where P1,2 are the quasi-Poisson bivectors defined on the first and second copy of SU(2) respectively, and
let us calculate the analogue of the left hand side of Eq. (8.22):11

P′#
(
K(y, θR

∣∣
H2H1

)
)

= P′#
(
K(y, θR

∣∣
H2

+ AdH2θ
R
∣∣

H1
)
)

= P#
2
(
K(y, θR

∣∣
H2

)
)

+ P#
1
(
K(AdH−1

2
y, θR

∣∣
H1

)
)

=
1
2

î
(1 + AdH−1

2
)y
ó

SU(2)(2)
+

1
2

î
(1 + AdH−1

1
)AdH−1

2
y
ó

SU(2)(1)
, (9.1)

where in the second step we used the linearity of P1,2 and the Ad-invariance of K, and in the third one we
used Eq. (8.22). This transformation has the undesirable property that it treats the first and the second copies
of the group on a different footing.

To do better, and generalize Eq. (8.22), this formula should involve the adjoint action associated to the
product H2H1, in both factors on the right-hand side. This is accomplished by introducing the bivector

ψ21 :=
1
2

∑
k

(τk)2 ∧ (τk)1, (9.2)

11To see that θR
∣∣

H2H1
= θR
∣∣

H2
+ AdH2θ

R
∣∣

H1
, it is convenient to use θR

∣∣
H

= dHH−1 and apply the Leibniz rule.
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where (τk)` := (τk)SU(2)(`) indicates the vector field generating the action by conjugation in the direction τk

within the `-th copy of the group. Then,

ψ12
#(K(y, θR

∣∣
H2H1

)
)

= ψ12
#(K(y, θR

∣∣
H2

)
)

+ ψ12
#(K(AdH−1

2
y, θR

∣∣
H1

)
)

=
1
2

∑
k

K
Ä

y, ι ((τk)2) θR
∣∣

H2

ä
(τk)1 −

1
2

∑
k

K
Ä

AdH−1
2

y, ι ((τk)1) θR
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H1

ä
(τk)2

=
1
2

î
(1 − AdH−1

2
)y
ó

SU(2)(1)
−

1
2

î
(1 − AdH−1

1
)AdH−1

2
y
ó

SU(2)(2)
, (9.3)

where we used (τk)` = (τk)R
` − (τk)L

` , as well as yL = (AdHy)R. This calculation shows that the correct “fused”
quasi-Poisson bivector is

P2~1 = P2 + P1 + ψ21 , (9.4)

because it satisfies the moment map condition

P2~1
(
K(y, θR

∣∣
H2H1

)
)

=
1
2
[
(1 + Ad(H2H1)−1 )y

]
SU(2)(2)×SU(2)(1) , (9.5)

where ySU(2)(2)×SU(2)(1) = ySU(2)(2) + ySU(2)(1) .
Note that the fusion procedure brings the quasi-Poisson character of these constructions to the forefront.

In particular, the quasi-Poisson brackets on the product space do not satisfy the Jacobi identity, and we see
that the Jacobi identity on a single copy of SU(2) only held by a fortunate coincidence, in a sense due to the
low dimensionality of the space. To be more specific, the violation of the Jacobi identity is given by:

φ21 :=
1

12
ε i jk(τi)2×1 ∧ (τ j)2×1 ∧ (τk)2×1, where (τi)2×1 = (τi)2 + (τi)1 . (9.6)

Note also, that the fusion is not commutative, since ψ12 , ψ21. This reflects the fact that the group product
itself is non-commutative and becomes even more apparent when you iterate the process. However, It is a
quick check that the fusion product is associative. Then, the total quasi-Poisson space associated to the four
faces of the tetrahedron is SU(2)⊗4 equipped with the quasi-Poisson bivector

P~4 := P4~3~2~1 = P4 + P3 + P2 + P1 + ψ21 + ψ31 + ψ41 + ψ32 + ψ42 + ψ43 . (9.7)

This quasi-Poisson bivector violates the Jacobi identity by a term φ4321 generalizing Eq. (9.6).

Reduction All that remains is to find the space that results upon reduction by the closure constraint

H4H3H2H1 = e . (9.8)

By construction, the total momentum H4 · · ·H1 generates rigid rotations of the tetrahedron, i.e. the diagonal
conjugacy transformation: H` 7→ GH`G−1 ∀`. At the end of section 8 we noted that each quasi-Poisson
bivector is tangent to all the conjugacy classes of the various SU(2)(`); this fact is unchanged by introducing
the ψ`m. This allows us to restrict attention to the space of shapes of tetrahedra with fixed areas, the area
corresponding to the conjugacy class of the group element characterizing that face. The invariance under
diagonal conjugation implies that the coordinates on the reduced space are invariant functions under this
action. And, finally, a simple counting shows that the reduced space is generically two-dimensional:

4 × (dim SU(2) − 1) − dim SU(2)closure − dim SU(2)gauge = 2 , (9.9)

where (dim SU(2) − 1) is the generic dimension of a conjugacy class in SU(2), the second term accounts
for the closure constraint and the last mods out the transformations generated by this constraint. This is
essentially the same counting as in the flat case.
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Then we can coordinatize the reduced phase space by any two independent conjugation-invariant func-
tions of the H` (both distinct from the traces of H`). The most natural choice seems to be a couple of
functions of the type {Tr(H2H1),Tr(H4H3}. Had we chosen such coordinates the (quasi-)Poisson bracket
between them in the reduced space would simply be the one induced by the quasi-Poisson bivector P~4:
{Tr(H2H1),Tr(H4H3)}red ≡ {Tr(H2H1),Tr(H4H3)}~4. Although this procedure for defining the reduced
phase space is perfectly admissible, it does not lead to a pair of conjugate variables. To find those, it is more
convenient to ask the following question: what is the (quasi-)Hamiltonian flow generated by Tr(H2H1)?
Since the reduced space is two dimensional, the answer to this question will immediately reveal the conju-
gate variable to Tr(H2H1), in the form of the flow parameter.

For notational convenience let us introduce

∆21 := Tr(H2H1) = 2 cos
a2

2
cos

a1

2
− 2 sin

a2

2
sin

a1

2
n̂2.n̂1. (9.10)

The spherical law of cosines, Eq. (2.21b), immediately yields the interpretation of ∆21; consider the spherical
triangle of S3 defined by the length of two of its edges, a1/2 and a2/2 respectively, and the angle subtended by
them, arccos(n̂2.n̂1). Then, the third side has a length given by A21 := arccos(∆21/2). The same construction
can be repeated for ∆43 using side lengths given by a3/2 and a4/2. The closure constraint ensures that ∆21

and ∆43 have the same length and hence that the two triangles can be glued along the corresponding sides to
obtain a closed polygon in S3. The angle between the two “wings” of the polygon can be fixed by calculating
∆14 = ∆32, which fixes the distance between the other two vertices of the polygon.12

Returning to the calculation of the flow generated by ∆21 we have:

P#
red(d∆21) ≡ P#

~4(d∆21)

= P#
2~1(d∆21) + P#

4~3(d∆21) + (ψ31 + ψ32)#(d∆21) + (ψ41 + ψ42)#(d∆21), (9.11)

where in the second equality we have grouped the terms in a convenient way. By construction ∆21 is the
trace of the total momentum associated to the quasi-Poisson space SU(2)(2) × SU(2)(1). Calculating along
the lines of Eqs. (8.20) and (8.25), we obtain

P#
2~1(d∆21) = Tr(H2H1τk)(τk)2×1 = − sin

A21

2
n̂k

21(τk)2×1 , (9.12)

where A21 and n̂21 are defined by H2H1 = exp A21n̂.~τ and again (τk)2×1 = (τi)2 + (τi)1. Meanwhile, the
second term in Eq. (9.11) vanishes immediately due to the mismatched dependencies. But, what about
the last two terms? For definiteness, let us focus on the first one. Both of its sub-terms must clearly be
proportional to (τk)3. However, since (τk)` is by definition the generator of conjugations of H` in direction
τk and Tr[(GH2G−1)H1] = Tr[H2(G−1H1G)] we see that ι

(
(τk)2

)
d∆21 = −ι

(
(τk)1

)
d∆21 and this term as a

whole vanishes. The final result of this computation is then

P#
red(d∆21) = − sin

A21

2
n̂k

21(τk)2×1 , (9.13)

which by simple derivation of the explicit expression for ∆21 can also be written as

P#
red(dA21) = n̂k

21(τk)2×1 . (9.14)

This expression has an interesting geometrical interpretation: the length of the diagonal (21) of the
spherical polygon generates a Hamiltonian flow that rigidly rotates the sides 1 and 2 of the polygon around

12In this way we have obtained a spherical tetrahedron in S3. This tetrahedron is in a sense “dual” to the one we described in the
first part of the paper, its sides’ lengths are equal to the areas of the that tetrahedron, which, in contrast, can be either spherical or
hyperbolical. A more direct way of identifying this tetrahedron is via the identification of SU(2) and S3: the position of the vertices are
then given by {e,H1, (H2H1),H4} ⊂ SU(2) � S3.
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itself and leaves the sides 3 and 4 fixed. The natural parameter of this flow is the angle ϕ21 between the
wings (21) and (34) of the polygon hinged by the diagonal (21) = (43):

P#
red(dA21) =

∂

∂ϕ21
. (9.15)

Once expressed this way, it is also clear that this is a gauge invariant statement that makes perfect sense in
the reduced space where there is no difference between the diagonal (21) and (43). This Hamiltonian flow
is the simplest instantiation of a bending flow [35, 36, 50]. Locally the same result holds in the phase space
of flat tetrahedra [7, 12, 13]. Notice however, that the global structure of the Poisson space is very different:
in particular, the interval in which A21 lives at fixed (large enough) a1 and a2 is generically modified by the
compact nature of the three-sphere. This has important consequences for the quantization of this space.

The Poisson bivector

Pred =
∂

∂A21
∧

∂

∂ϕ21
⇔

{
A21, ϕ21

}
red = 1 (9.16)

is a completely standard Poisson structure with no trace of quasi structure. This is not a coincidence, since
it is a general feature of the reduced phase spaces of this kind that they are Poisson (in fact, symplectic)
spaces. Taking our concrete case as an example, this can be understood from the expression of φ4321, the
term encoding the violation of the Jacobi identity in the total quasi-Poisson space before reduction. This is a
tri-vector composed of terms generating the diagonal conjugacy transformation in the four copies of SU(2).
However, the reduced space is obtained precisely by requiring invariance under such transformations.

The symplectic coordinates (A21, ϕ21) relate to the complex Fenchel-Nielsen (FN) coordinates (x, y) of
flat connections on a four-punctured sphere [34], satisfying {ln x, ln y} = 1. The complex FN length variable
x is the eigenvalue of the holonomy along a loop encircling two punctures, i.e. the eigenvalue of H2H1.
Hence, x2 = exp(−iA21). On the other hand, ϕ21 is the conjugate variable, and is therefore related to the
(logarithmic) complex FN twist variable ln y up to a certain function of A21.

As a last remark, we point out an explicit expression for ϕ21:

ϕ21 = arccos
Å

n̂1 × n̂21

|n̂1 × n̂21|
·

n̂4 × n̂21

|n̂4 × n̂21|

ã
. (9.17)

10 Quasi-Hamiltonian approach

In this section we give a very brief account of the quasi-Hamiltonian approach to the phase space of shapes.
Our main goal is to calculate the quasi-symplectic volume (area) of the leaves. In this formulation one is
forced to work directly at the level of the conjugacy classes, i.e. on the leaves. This is because the quasi-
symplectic two form is in a sense the inverse of the quasi-Poisson bivector, and as such can’t have any
degenerate direction. This statement would apply precisely in the standard symplectic case corresponding to
the flat limit in which the group elements are substituted by Lie-algebra elements. However, as is often the
case, in the quasi setting there are important twists to the original definitions.

We first recall the standard symplectic structure on the coadjoint orbits in g∗. The coadjoint orbit Oα of
an element α ∈ su(2)∗ is defined as

Oα =
{
β ∈ su(2)∗ | ∃G ∈ SU(2) with β = Ad∗G−1α

}
. (10.1)

This set carries a canonical, closed, non-degenerate 2-form ωα defined by

ωα(yOα , zOα ) = 〈α, [y, z]〉 ∀y, z ∈ su(2), (10.2)

where on the left-hand side yOα , zOα ∈ X(su(2)∗) are the vector fields generating the coadjoint action in the
directions y, z ∈ su(2), respectively. To show that this form is closed, introduce the symbol cyclicx,y,z{·} for a
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summation on cyclic permutations of the elements x, y, z, and calculate

dωα(xOα , yOα , zOα ) = cyclicx,y,z

{
xOαωα(yOα , zOα )

}
− cyclicx,y,z

{
ωα([xOα , yOα ], zOα )

}
= 2cyclicx,y,z

{
〈α, [x, [y, z]]〉

}
≡ 0, (10.3)

with the last expression vanishing due to the Jacobi identity on su(2). In this setting, the moment map
condition corresponding to Eqs. (8.7) and (8.12) is:

ι(yOα )ωα = 〈dα, y〉. (10.4)

We want to generalize this equation to the case where the variables are in the group instead of in the
(dual of the) Lie algebra. To this end, define

OH =
{

H′ ∈ SU(2) | ∃G ∈ SU(2) s.t. H′ = GHG−1} , (10.5)

and for any y ∈ su(2) define yOH as the vector field that generates the conjugation action on OH in the
direction y (these are simply the restriction to OH ⊂ SU(2) of the ySU(2) = yR − yL defined above). Then, the
generalization of the quasi-Hamiltonian moment map condition reads

ι(yOH )ωH =
1
2

K
(
θL + θR

∣∣
H , y
)
, (10.6)

where we have denoted the quasi-symplectic two form on the conjugacy class OH ⊂ SU(2) by ωH and in this
section the

∣∣
H is used as shorthand for the pullback of the Maurer-Cartan forms to OH . This formula can be

justified very similarly to its counterpart in the quasi-Poisson construction: the 1-form dα is substituted by
the a particular combination of left and right Marurer-Cartan forms, i.e. 1

2 (θR + θL), that is compatible with
the antisymmetry of ωH:

ι(yOH ⊗ yOH )ωH =
1
2

K
(
ι(yOH )(θL + θR)

∣∣
H , y
)
≡ 0. (10.7)

One can show, see [3], that the above moment map condition implies that the form ωH is not closed:

dωH = −
1

12
K
(
θL, [θL, θL]

) ∣∣
H , (10.8)

and therefore it is not symplectic. Moreover, it has a kernel on the equatorial region of SU(2):

kerωH =
{

yOH | y ∈ su(2) and y ∈ ker(AdH + 1)
}
. (10.9)

This is analogous to the presence of a kernel for the quasi-Poisson bivector P. Notice that the two are not
inverses of one another, as in the standard symplectic case, and the relation between them is more involved.
We refer to [2] for details, but for completeness we provide the inversion formula

P#
OH
◦ ω[H = IdTOH −

1
4

(τk)OH ⊗ (θL
k − θ

R
k )
∣∣

H (10.10)

where θL
k = K(θL, τk).

One can also perform the fusion of two quasi-symplectic spaces, and again this procedure needs a twist,
which reads:

ω2~1 = ω2 + ω1 +
1
2

∑
k

(
θL

k

)
2 ∧
(
θR

k

)
1 . (10.11)

Quasi-Hamiltonian reduction is possible as well, and leads to a standard symplectic space, much as reduction
in the quasi-Poisson setting did.
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Finally, we want to mention that it is possible to associate a volume to the quasi-symplectic spaces OH ,
which can eventually be used to calculate the volume of the reduced space, leading to the expected result;
that is, to Witten’s formula for the symplectic volume of the moduli space of flat connections on a Riemann
surface, see [4] and references therein. We do not go into this topic in any detail, but simply calculate the
volume of a single leaf. For this we need an explicit expression for ωH . To calculate this, we turn to the
moment map condition, and contract it with another vector field zOH :

ι(yOH ∧ zOH )ωH = ε i
jky jakε l

mnzmanι

Å
∂

∂ai ∧
∂

∂al

ã
ωH

=
sin a

a
εpqrypzqar, (10.12)

where we have again parametrized SU(2) by H = exp~a.~τwith ~a = an̂ and in the first line we used the explicit
expression of ySU(2) obtained in Eq. (8.27). In the second line we used the following explicit formula for
1
2 (θL + θR):

1
2
(
θL + θR) ∣∣

H =

ï
sin a

a
δi

j +
a − sin a

a
nin j

ò
τida j . (10.13)

Because y and z ∈ su(2) are arbitrary, it follows that:

ωH =
sin a

a
akεki j dai ∧ da j . (10.14)

This formula should be understood as restricted to the conjugacy class of H, that is to the sphere of radius
a within the coordinate space {~a}. This is consistent, since the 2-form of the previous formula is tangent to
these spheres, in the sense that it vanishes when contracted in the radial direction: ι(∂/∂a)ωH ≡ 0. Anyway,
to make this fact completely explicit, it suffices to recognize that on the 2-sphere of radius a, Oa, the quasi-
symplectic 2-form is just

ωa = sin a d2Ω, (10.15)

where d2Ω is the homogeneous measure on the unit 2-sphere. This can be compared with the symplectic
form on the su(2)∗ coadjoint orbits ωsu(2)∗

a = a d2Ω. Notice that from this formula it is evident that ωa

happens to be closed. This is the quasi-symplectic version of the fact that PSU(2) happens to satisfy the
Jacobi identity. Here it is even more clear that this happens for purely dimensional reason: the leaves Oa are
2-dimensional and therefore ωa is already a top-dimensional form. This would not happen for other groups,
nor in the fusion space of two or more leaves. Also, note that ωa vanishes at a = π, i.e. exactly were the
operator (1 + AdH) has a kernel.

In the theory of quasi-symplectic spaces, the generalization of the Liouville form L has an extra term in
order to assure thatL , 0 everywhere. This generalization can be used to calculate the symplectic volume of
the moduli space of flat connections (Witten’s formulas) [4]. The generalized expression of L in our context
is

LH =
ωH»

det
( 1+AdH

2

) . (10.16)

To calculate the determinant we observe that the adjoint action of H ∈ SU(2) on its Lie algebra is essen-
tially an action by rotation around the axis n̂ by an angle a. Moreover, the determinant is invariant under
conjugations of its argument, and therefore the axis n̂ can be fixed to the ẑ-axis. In this way

det
Å

1 + AdH

2

ã
= det

Å
1 + Rz(a)

2

ã
where Rz(a) =

Ñ
cos a − sin a 0
sin a cos a 0

0 0 1

é
. (10.17)
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This immediately gives

LH = 2 sin
a
2

d2Ω . (10.18)

Notice that in the study of the coadjoint orbits the Liouville measure is identical to ωsu(2)∗
H with no extra

factor needed. Therefore, this formula should be compared to Lsu(2)∗
α = a d2Ω. Wonderfully, LH is totally

regular at a = π, i.e. where ωa was found to be vanishing. The volume form LH vanishes only at a = 2π,
precisely on the only non-trivial central element of SU(2), where the orbit OH=−e reduces to a point. The
expression for LH most clearly displays the compact nature of the area-vector spaces. This compactness has
important consequences for the quantization of these systems. See section 12 for a brief discussion of this.

To conclude, we provide expressions for ωH and LH explicitly displaying the radius of curvature r:

ωH = r2 sin
a
r2 d2Ω and LH = 2r2 sin

a
2r2 d2Ω. (10.19)

It is clear that in the limit r → ∞ one recovers ωsu(2)∗
a and Lsu(2)∗

α , with no residual dependence on r.

11 Summary

Minkowski’s theorem establishes a one-to-one correspondence between closed non-planar polygons in E3

and convex polyhedra, via the interpretation of the vectors defining the sides of the polygon as area vectors
for the polygon. Extending this theorem to curved polyhedra is non-trivial. We have proven the first gener-
alization, to the best of our knowlege, of Minkowski’s theorem for curved tetrahedra. Our techniques, make
it possible, at least in principle, to extend the result to more general polyhedra. Our theorem establishes a
correspondence between non-planar, geodesic quadrilaterals in S3, encoded in four SO(3) group elements
{O`} whose product is the group identity, and flatly embedded tetrahedra in either S3 or H3. This corre-
spondence depends on the choice of a (non-canonical) isomorphism between the fundamental groups of
the four-punctured two-sphere and the tetrahedron’s one-skeleton. Finally, we used our theorem to reinter-
pret the Kapovich-Millson-Treloar symplectic structure of closed polygons on a homogeneous space (with
fixed side lengths and up to global isometries), as the symplectic structure on the space of shapes of curved
tetrahedra (with fixed face areas and up to global isometries).

In the context of the phase space construction, it was important to lift the {O`} to elements {H`} of SU(2).
Because SU(2) is a double cover of SO(3), a given tetrahedron is not in one-to-one correspondence with four
SU(2) group elements multiplying to the identity. Nonetheless, bijectivity can be recovered if one decorates
the sides of the tetrahedron with plus and minus signs. These can be thought of as relative orientations
of the reference frames at the various vertices of the tetrahedron, and are corrections that a spinor would
be sensitive to. In this sense, these signs are the extra structure one would expect to need to have a full
description of a discrete spinorial geometry. A difficulty that arises in this context is that there is no way,
in general, to extend a spin structure from the one-skeleton of the tetrahedron to the full ambient space
consistently. Nevertheless, it is intriguing that the lift from a Levi-Civita to a spin connection is required to
effectively treat the symplectic nature of a tetrahedron’s shape.

The geometrical construction investigated here also gave rise to a couple of other unexpected features.
First of all, one does not need two distinguished frameworks to deal with spherical and hyperbolic geome-
tries, as in two dimensions [15, 17, 22]. On the contrary, four SO(3) group elements that close encompass
both scenarios. This can be interpreted as follows: The four SO(3) group elements are precisely four Levi-
Civita parallel transport holonomies that an observer might measure by following a (topological) tetrahe-
dron’s one-skeleton in some general Riemaniann space. If so, these four holonomies are all the observer
knows about that region of space; what is the best approximation she can give of the geometry of that region
with the information at her disposal? We claim this is the tetrahedral geometry our theorem allows her to
reconstruct. With this picture in mind, the choice of isomorphism between the fundamental groups of a four-
punctured sphere and the tetrahedron’s one skeleton is not an extra ingredient, but simply a datum arising in
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her experimental setting. There are, however, situations in which the previous picture fails to be viable. This
is where the second unexpected feature of the theorem comes in: at times one encounters geometries which
are hyperbolic and contain nevertheless triangles of area larger than π. This forced the introduction of a new
type of hyperbolic triangle (and more generally, simplices) extending across the two sheets of a two-sheeted
hyperoboloid. These triangles have an infinite metrical area, but finite holonomy area.

The non-commutative nature of the generalized area vectors {O`}, as well as the compactness of their
domain of definition, led us to consider the quasi-Poisson manifolds of Anton Alekseev and collaborators.
Quasi-Poisson manifolds generalize Poisson manifolds by allowing for group-valued moment maps and a
(controlled) failure of the Jacobi identity. The group-valued moment map was particularly valuable in the
present work where it allowed us to generalize the fact that the closure constraint generates rigid rotations
of the polyhedron to the curved context. Analogues of these facts were known in the context of the con-
struction of the symplectic form on the moduli space of flat connections on a Riemann surface. Indeed, a
finite dimensional derivation of this symplectic structure was one of the main motivations behind the work
of Alekseev and collaborators. We have provided an interpretation of these results that allows for new con-
nections between the study of flat connections on Riemann surfaces, deformed spin-networks for quantum
gravity, and discrete three-dimensional curved geometries.

12 Outlook

We have already applied the results of this paper to the construction of a spinfoam model for four-dimensional
quantum gravity with cosmological constant [31]. The tetrahedra described here constitute the boundary
states of the model, thus this model provides a physical motivation for studying their symplectic structure.
The theorem presented in this paper also serves as the foundation for the reconstruction of the (semiclassical)
geometry of a curved four-simplex considered in that work. There the tetrahedron’s closure relation stems
from a flatness condition for the holonomies living in S3 \ Γ5, where Γ5 is the four-simplex one-skeleton.
Interestingly, the four-simplex does not have an analogue of the closure constraint, but instead a new set of
spacetime holonomies encodes how to glue the five tetrahedra into a simplex. For more details we refer to
the cited work.

As the application to spinfoams shows, it is interesting to seek extensions of our work not only towards
more general polyhedra, but in particular to a generic triangulated manifold. The most natural setting for this
is that of (discrete) twisted geometries [28, 29]. In a twisted geometry, the face shared by two polyhedra has
a well defined area, but not a well defined shape, since this depends on which side it is viewed from. These
geometries are a classical interpretation of spin-networks states. The spin-network is a graph colored by an
SU(2) irrep (spin) on each link and by SU(2) intertwiners on the vertices, much like in lattice gauge theory.
Each vertex is interpreted as a polyhedron, with as many faces as coincident links. These polyhedra are
described by the intertwiner quantum number, and their faces carry areas encoded by the spins associated to
the links. In the dual representation, one can associate to each spin-network a wave function which depends
on one SU(2) group element per link and which is invariant under SU(2) transformations at each vertex of
the graph (see [45]).

In this representation the group elements are interpreted as the parallel transports between the reference
frames of two adjacent polyhedra, while the su(2) generators of the SU(2) transformation at the end point
of each link are interpreted as the area vectors of the polyhedron sitting at the given vertex. Holonomies
and area vectors, can be packaged into a natural symplectic structure at every (half-)link, that of T∗SU(2).
Interestingly this symplectic structure is induced by that of general relativity when canonically quantized in
Ashtekar’s variables [49].

What our work suggests is to generalize this construction to curved, classical and quantum, twisted
geoemetries. For this, one has to consider many curved tetrahedra, connected one to another by pathes
colored by SU(2) holonomies. The holonomies considered in this paper rather play the rôle of the area
vectors, or fluxes in the spin-network parlance. This way, one ends up studying the double SU(2) × SU(2)
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as the pertinent generalization of T∗SU(2). Again, this space carries a natural quasi-Poisson structure, but
no symplectic structure (a consequence of the triviality of its second deRahm cohomology), which was
introduced by Alekseev to provide a finite dimensional construction of the moduli space of flat connections
on a Riemann surface. In our context, the relevant Riemann surface is that of the thickened spin-network
graph. Quantization of these deformed twisted geometries requires representations of the quantum (in the
algebraic sense) objects associated to quasi-bialgebras, which are the infinitesimal analogues of the double
group SU(2) × SU(2). These quantum objects are built out of a quasi-Hopf analogue of the appropriate
qunatum Lie algebra. Their representations are known to be related to those of a quantum group evaluated
at a root of unity [16]. The study of quantum twisted geometries is work in progress.

The phase space’s compactness and the associated emergence of quantum group representations at the
root of unity, which allow only a finite total number of states, have two compelling consequences: the first of
these is that geometrical observables, such as the volume of a curved tetrahedron, have discrete and bounded
spectra. The second is that spinfoam models built out of quantum group representations must be finite, in
the sense that they have no bubble divergences [25, 32]. Unfortunately, we do not yet know how to make
this precise in the context of our spinfoam model [31], which is defined somewhat formally in terms of
a complex Chern-Simons theory. The finiteness of a spinfoam model does not mean that bubbles are not
potentially associated with large amplitudes (scaling with powers of the inverse cosmological constant) and
may require a renormalization procedure, see [44]. From a physical perspective the Planck scale regularizes
ultraviolet divergences, while the cosmological scale regularizes infrared divergences.

Finally, an interesting application of deformed spin-networks would be to introduce a more robust coarse
graining procedure for spin-networks. Indeed, the deformed networks carry local curvature at their vertices,
and therefore could be used to deal with the failure of gauge invariance that standard coarse-grained spin-
networks suffer from [9, 39].
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[21] Dupuis, Maı̈té & Girelli, Florian, 2014 Observables in Loop Quantum Gravity with a cosmological
constant. Phys.Rev. D90(10) 104037 [arxiv:1311.6841]
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