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Abstract. The Schläfli identity, which is important in Regge calculus and loop
quantum gravity, is examined from a symplectic and semiclassical standpoint
in the special case of flat, 3-dimensional space. In this case a proof is given,
based on symplectic geometry. A series of symplectic and Lagrangian manifolds
related to the Schläfli identity, including several versions of a Lagrangian manifold
of tetrahedra, are discussed. Semiclassical interpretations of the various steps
are provided. Possible generalizations to 3-dimensional spaces of constant
(nonzero) curvature, involving Poisson-Lie groups and q-deformed spin networks,
are discussed.
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1. Introduction

The Schläfli identity, which is familiar in applications of Regge calculus in general
relativity (Regge 1961; Misner, Thorne and Wheeler 1973; Regge and Williams 2000),
is a differential relation connecting the volume of a polyhedron in an n-dimensional
space of constant curvature with the (n−2)-volumes and dihedral angles of its (n−2)-
dimensional faces. In this article we deal with the special case of a tetrahedron in
Euclidean R

3, for which the identity itself is given by (4) below. In this case we
provide an apparently new proof of the Schläfli identity, one based on symplectic
geometry. We also discuss some geometrical constructions related to the proof,
including a pair of symplectic reductions that take us from a 48-dimensional symplectic
manifold in which the proof is set to a 12-dimensional symplectic manifold in which
the space of tetrahedra is realized as a Lagrangian submanifold. The inspiration for
our proof comes from a semiclassical or asymptotic analysis of the Wigner 6j-symbol
(Wigner 1959, Edmonds 1960, Ponzano and Regge 1968, Schulten and Gordon 1975ab,
Biedenharn and Louck 1981, Roberts 1999, Taylor and Woodward 2005, Aquilanti et
al 2012). As our analysis proceeds we provide semiclassical interpretations of many
of the steps.

http://arxiv.org/abs/1409.7117v1
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The Schläfli identity is useful for obtaining formulas for the volume of polyhedra
in spaces of constant curvature. Schläfli’s (1858) original derivation concerned spaces
of positive curvature (we note that several of the citations to this article in the recent
literature are incorrect). The result was generalized to spaces of negative curvature by
Sforza (1907) and new proofs given by Kneser (1936). More recent treatments include
Milnor (1994), Alekseevskij, Vinberg and Solodovnikov (1993) and Yakut, Savas and
Kader (2009).

Another approach to the Schlafli identity has been explored recently (Rivin and
Schlenker 2000, Souam 2004). It begins with a formula which is valid for an arbitrary
hypersurface embedded in an Einstein manifold (a manifold of constant curvature
whose metric satisfies the Einstein equations with a cosmological constant). The
formula relates the variation of the volume enclosed by the hypersurface to variations
of the extrinsic curvature and induced metric on the hypersurface. We have shown
that the same formula can be obtained by varying the Einstein-Hilbert action (the
integral of the curvature scalar) evaluated on the enclosed region and relating that
variation to a surface integral over the boundary using manipulations similar to those
employed in the ADM formalism in general relativity (Misner, Thorne and Wheeler
1973, Thiemann 2007). For a polyhedron, the extrinsic curvature is concentrated in
the manner of a delta function on the codimension two faces of the polyhedron, where
its integral is related to the dihedral angles. When applied to the polyhedron, the
formula thus reduces to the Schläfli identity.

Although our (symplectic) proof of the Schläfli identity stands on its own, the
applications that we have in mind are related to Regge calculus, an approach to
discretizing general relativity, and to loop quantum gravity, which also involves a
discretization of the degrees of freedom of the gravitational field. See, for example,
Barrett and Steele (2003), Livine and Oriti (2003), Dittrich, Freidel and Speziale
(2007), and Bahr and Dittrich (2009, 2010), where the Schläfli identity plays a crucial
role. See also Carfora and Marzuoli (2012) for a modern, comprehensive review of
simplicial methods in quantum gravity and other fields, including the role of state sums
and their regularizations. We suspect that our symplectic approach to the Schläfli
identity may be especially relevant in loop quantum gravity, where spin networks such
as the 6j-symbol play an important role and where the classical phase space (Freidel
and Speziale 2010, Livine and Tambornino 2011) has been identified with the same
symplectic manifolds that appear in our analysis.

We begin in Sec. 2 by explaining the shape space of tetrahedra and by presenting
an ad hoc construction of a symplectic manifold and a submanifold thereof that can be
identified with the space of tetrahedra. This submanifold is Lagrangian by virtue of
the Schläfli identity, with a generating function (7) that we call the “Ponzano-Regge
phase.” In Sec. 3 we present an integral representation of the Ponzano-Regge phase,
essentially a derivation of the phase of the asymptotic expression for the Wigner 6j-
symbol, following the method of Roberts (1999). In Sec. 4 we present a proof of
the Schläfli identity using this integral representation. The method of proof involves
integrating the symplectic form over a certain surface in phase space and then using
Stokes’ theorem, in a manner common to several basic proofs in classical mechanics
(Arnold 1989). Then in Secs. 5 and 6 we carry out a sequence of two symplectic
reductions on the symplectic manifold in which the proof of the Schläfli identity is
set, recovering at the end the symplectic manifold and Lagrangian submanifold of
tetrahedra that we started with in Sec. 2. In Sec. 7 we present various remarks and
conclusions, including a outline of some of the features of the generalization of this
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work to the q-deformed 6j-symbol and the Schläfli identity in spaces of constant,
nonzero curvature.

2. The Shape Space and Lagrangian Manifold of Tetrahedra

2.1. Tetrahedra and Their Shapes

A tetrahedron may be defined as a subset of Euclidean R3 in terms of an ordered set
of four points, which are the vertices. The six edges and their lengths are defined in
terms of the vertices. As special cases we allow the tetrahedron to be flat (the four
vertices may lie in a plane) or of lower dimensionality (the vertices may lie in a line
or they may all coincide). Any or all of the vertices are allowed to coincide, so that
some or all of the edge lengths may be zero.

By this definition the space of tetrahedra is (R3)4. If we consider two tetrahedra
equivalent that are related by translations, then the space reduces to (R3)3, in which
the three vectors can be taken as the edge vectors emanating from a given vertex.
If we expand the equivalence classes to include proper rotations, then the space of
tetrahedra reduces to what we will call the “shape space of tetrahedra,”

S =
(R3)3

SO(3)
∼= R

6, (1)

where the action of SO(3) is the diagonal action on all three copies of R3 (that is, it is
a rigid, proper rotation of the tetrahedron) and where ∼= means “is diffeomorphic to.”
This is shown by Narasimhan and Ramadas (1979) and discussed further by Littlejohn
and Reinsch (1995). In the following two tetrahedra will be considered to have the
same shape if they are related by a translation and a proper rotation.

Then it turns out that the space of flat tetrahedra (those whose vertices lie in a
plane in R

3) constitute a subspace R5 ⊂ S ∼= R
6, which we will call the “shape space of

flat tetrahedra.” If we define the volume V of the tetrahedron as 1/6 the triple product
of three vectors emanating from a given vertex, then the subspace R5 of flat tetrahedra
divides shape space S into three subsets, those on which V > 0, V < 0 and V = 0
(the last being the subspace R5 of flat tetrahedra itself). Furthermore, performing a
spatial inversion of a tetrahedron in R3 causes the point of S to be reflected in the
hyperplane R5 of flat tetrahedra. In particular, the shape of a tetrahedron is invariant
under spatial inversion if and only if it is flat.

It is also shown in the references cited that the six edge lengths of the tetrahedron
form a coordinate system on the regions V ≥ 0 and V ≤ 0 of S, that is, there is a
one-to-one map from these regions of S to a region of the six dimensional space
with coordinates Jr, r = 1, . . . , 6, where Jr is the length of edge r. This map is
not onto, however, since there are values of the Jr that do not correspond to any
tetrahedron. In the first place these lengths obviously must satisfy Jr ≥ 0 and the
four triangle inequalities for the four faces of the tetrahedron; in addition, there is
a further requirement that the faces can be assembled into a tetrahedron. All these
conditions can be expressed in terms of the minors of the Cayley-Menger determinant
(Ponzano and Regge 1968) or of an associated Gram matrix (Littlejohn and Yu 2009).
Spatial inversion maps a tetrahedron with volume V into one with volume−V , without
changing the edge lengths Jr; therefore, given edge lengths such that a tetrahedron
exists, the shape of the tetrahedron is determined to within a spatial inversion (hence
uniquely, for a flat tetrahedron).
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We now define the dihedral angle ψr associated with edge r for a tetrahedron of a
given shape, first for the case V ≥ 0. A given edge is the intersection of two adjacent
faces; the dihedral angle is not defined unless the areas of the two faces are nonzero, so
we assume this. (If a face has zero area, then we will refer to it as “degenerate.”) Then
we define the dihedral angle ψr as the angle between the outward pointing normals
to the two faces. This gives 0 ≤ ψr ≤ π. Finally, if V < 0, we define ψr as the
negative of the angle ψr for the spatially inverted shape (which has V > 0). With
these conventions, the dihedral angles lie in the range −π < ψr ≤ π, and all dihedral
angles change sign under spatial inversion, modulo 2π.

The subset of shape space on which one or more dihedral angles are not defined
consists of tetrahedra with one or more degenerate faces. All such tetrahedra have zero
volume, so they form a subset of the shape space R5 of flat tetrahedra. This subset
has codimension 1 inside R5 (more precisely, it is the union of smooth manifolds, of
which the maximum dimensionality is 4). If the dihedral angles ψr are defined for a
flat tetrahedron, then they are either 0 or π, and are constant inside connected regions
of the space R5 of flat tetrahedra; these regions are separated by the codimension 1
subset upon which some face is degenerate. We will denote the subset of shape space
S upon which the dihedral angles are defined by Ṡ; it is S minus the tetrahedra with
one or more degenerate faces.

Our definition of the dihedral angles differs from the usual one used in discussions
of the Schläfli identity, which is the absolute value of the definition given here. Our
definition has the advantage that the dihedral angles are smooth functions along a
smooth curve crossing the subspace R5 of flat tetrahedra, modulo 2π, if we avoid
shapes with degenerate faces. More precisely, all dihedral angles are either 0 or π on
the subspace R5 of flat tetrahedra, as long as we avoid degenerate faces; as we pass
from the region V > 0 to the region V < 0 through this subspace, an angle which is
0 on the flat tetrahedron passes smoothly from positive to negative values, while an
angle that is π on the flat tetrahedron jumps discontinuously from +π to −π. In both
cases, the differential dψr is smooth. As an example of such a motion we may rotate
two adjacent faces relative to one another about their common edge, so that one face
passes through the plane of the other. Along this motion the lengths of all the edges
are constant except for the one opposite the edge common to the two faces.

We remark that the inclusion of negative angles in the definition of the dihedral
angles is merely a convenience in the case of the asymptotics of the 6j-symbol, but
such an extension to a full range of 2π in the dihedral angles is necessary for more
complex spin networks, such as the 9j-symbol. The definition of dihedral angles given
here is equivalent to the general definition given by Haggard and Littlejohn (2010).
In addition, negative dihedral angles emerge naturally at the end of the sequence of
symplectic reductions carried out in this paper (see Sec. 6).

If a tetrahedron has one or more edge lengths that are zero (that is, if two or more
vertices coincide), then two or more faces are degenerate; these tetrahedra form a set
of shapes that is a subset of the tetrahedra with degenerate faces. It has codimension
2 inside the space R

5 of flat tetrahedra.

2.2. Lagrangian Interpretation of the Schläfli Identity

For the time being we concentrate on the region V > 0, where the dihedral angles ψr
are functions of the edge lengths Jr. Since the ψr do not change if the edge lengths
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are scaled by some positive factor, Euler’s theorem on homogeneous functions implies
∑

r

Jr
∂ψs
∂Jr

= 0. (2)

The Schläfli identity has a similar appearance; it is
∑

r

Jr
∂ψr
∂Js

= 0, (3)

which, after multiplying by dJs and summing over s, can be written
∑

r

Jr dψr = 0. (4)

See Luo (2008) for other identities involving the matrix ∂ψr/∂Js, including the case
of tetrahedra in spaces of constant (nonzero) curvature.

If we differentiate (3) with respect to Jk and antisymmetrize in k and s, we obtain

∂ψk
∂Js

=
∂ψs
∂Jk

, (5)

that is, the matrix ∂ψk/∂Js is symmetric. Thus the Schläfli identity (3) implies the
Euler identity (2). It also implies

ψr =
∂S

∂Jr
, (6)

where S is given by

S =
∑

r

Jr ψr. (7)

We refer to S as the “Ponzano-Regge phase” since it appears in the factor cos(S+π/4)
in the asymptotic formula for the Wigner 6j-symbol due to Ponzano and Regge (1968).

L

Jr

Jr

ψr ψr

Rx

y

a

Figure 1. The tetrahedra form a Lagrangian manifold in the 12-dimensional
space with coordinates Jr and ψr , r = 1, . . . , 6.

These relations imply that the space of tetrahedra is a Lagrangian submanifold of
a 12-dimensional space with coordinates (J1, . . . , J6, ψ1, . . . , ψ6), of which a schematic
illustration is given in Fig. 1. The 6-dimensional manifold L is the graph of the
functions (6); because it is the graph of a gradient, L is Lagrangian with respect to
the symplectic form,

∑

r

dJr ∧ dψr = d
∑

r

Jr dψr. (8)
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The figure shows a point x of the 6-dimensional space of edge lengths (call it “J-space”)
and the vertical manifold of constant edge lengths above it which intersects L in the
point y, which in turn projects onto the space of angles (call it “ψ-space”) at point a.
Due to the homogeneity of the functions ψr(J1, . . . , J6), the point a does not move if
x is moved along the radial line R in J-space, that is, if the edge lengths are scaled by
a common factor. This means that the line a–y is everywhere tangent to L, and that
L is vertical in one dimension over ψ-space. Manifold L, which is 6-dimensional and
which has a nonsingular projection onto J-space, has only a 5-dimensional projection
onto ψ-space. That is, points of ψ-space that can be realized as dihedral angles of a
tetrahedron are first order caustic points of the projection from L.

The construction given has applied in the region V > 0. The same construction
works in the region V < 0, providing a second branch to the manifold illustrated in
Fig. 1, obtained from the first by ψr 7→ −ψr. On the subset V = 0, excluding shapes
with degenerate faces, the main problem is the angles ψr that jump discontinuously
from π to −π. We can avoid this by speaking of a trivial T 6-bundle over Ṡ. Then
what we are calling the functions ψr(J1, . . . , J6) becomes a smooth section of this
bundle, that is, the surface L, extended to flat shapes with nondegenerate faces.
Then the differential forms dψr and the combination seen in (4) are well defined
everywhere in the bundle, and the Schläfli identity in the form (4) holds everywhere
on L. Also, the Ponzano-Regge phase S, which involves the angles ψr themselves (not
their differentials), is a function on L; but it is discontinuous at the flat shapes.

In our next step we exploit a certain integral representation for the Ponzano-
Regge phase S. It turns out that S can be expressed as a line integral of a symplectic
1-form in a certain 48-dimensional symplectic manifold along a path running along one
24-dimensional Lagrangian submanifold and then back along another, in the type of
geometry that arises in the semiclassical analysis of scalar products 〈A|B〉 in quantum
mechanics. This is explained in Sec. 3. This representation is then used in Sec. 4
to prove the Schläfli identity. Then in subsequent sections it is shown that the 12-
dimensional symplectic manifold illustrated in Fig. 1 (“J–ψ-space” or the T 6 bundle
just described) can be obtained from the 48-dimensional one in which the integral
representation is expressed by means of two symplectic reductions. This process
reveals information about the symplectic manifold in Fig. 1 that is not apparent from
the presentation so far.

3. An Integral Representation of the Ponzano-Regge Phase

In this section we present a derivation of the Ponzano-Regge phase as the principal
contribution to the phase of the asymptotic expression for the Wigner 6j-symbol.
The derivation is a reformulation of that given by Roberts (1999), which as far as
we know is the most symmetrical and elegant available. We express it, however,
in a somewhat different geometrical language than Roberts, using real Lagrangian
manifolds that are parameterized as level sets of various momentum maps and an
arbitrary real representation of the wave functions, rather than a complex or coherent
state representation. We invoke the semiclassical treatment of the 6j-symbol merely
to motivate the geometry behind the representation of the Ponzano-Regge phase as
a certain line integral along certain Lagrangian manifolds; this is what we will need
for our proof of the Schläfli identity in Sec. 4. For the purposes of this paper the
manifolds need not be quantized.

Our brief discussion of the semiclassical mechanics of the 6j-symbol involves
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what we call the “12j-model” of the 6j-symbol, which is due to Roberts (1999) and
which is explained in terms of spin networks in Sec. 3 of Aquilanti et al (2012). In
this model, the 6j-symbol is expressed as the scalar product 〈A|B〉 of two vectors
|A〉 and |B〉 in a certain Hilbert space, where the labels A and B stand for two
complete sets of commuting observables of which the vectors are eigenvectors, with
certain normalization and phase conventions. The two complete sets involve angular
momentum operators whose components do not commute except on the subspace
where the angular momenta vanish, which is precisely the subspace in terms of which
the 6j-symbol is defined. These two sets of commuting operators correspond classically
to two sets of Poisson commuting functions on a certain phase space. Again, the sets
involve various (now classical) angular momenta whose components do not Poisson
commute except on the level set upon which the angular momenta vanish, which are
precisely the Lagrangianmanifolds relevant to the semiclassical evaluation of the scalar
product 〈A|B〉.

3.1. Phase spaces

We now explain the phase space in which these manifolds live. The notation is the same
as in Aquilanti et al (2007, 2012), with minor modifications which are noted. We begin
with the phase space or symplectic manifold Φ of a 2-dimensional, isotropic harmonic
oscillator with unit mass and frequency. This is a classical version of the harmonic
oscillator system used by Schwinger (1952) and Bargmann (1962) in their treatment
of the representation theory of SU(2), which anticipated many of the features of the
modern theory of geometric quantization (Kirillov 1976, Simms and Woodhouse 1977,
Bates and Weinstein 1997, Echeverŕıa-Enŕıquez et al 1999). Coordinates on Φ are
(x1, x2, p1, p2), so that as a symplectic manifold Φ = (R4, dp ∧ dx), where dp ∧ dx
means

∑

µ dpµ ∧ dxµ. We use indices µ, ν, etc to run over 1,2, indexing the two
harmonic oscillators; we often suppress these indices with an implied summation. We
introduce complex coordinates zµ = (xµ+ ipµ)/

√
2, z̄µ = (xµ− ipµ)/

√
2 on Φ, so that

Φ can be seen as (C2, idz†∧dz), where z (without the µ subscript) is seen as a column
vector or spinor (z1, z2)

T , where z† is seen as a row spinor (z̄1, z̄2) and where again
a summation over µ is implied. We denote the symplectic 2-form on Φ by ω = dθ,
where θ can be taken to be iz† dz. Although θ is complex, we will be only interested
in integrals of it along closed loops, for which the integrals are real.

The phase space Φ has several functions defined on it, including

I =
1

2
z†z, Ji =

1

2
z†σiz, (9)

where σi, i = 1, 2, 3 are the Pauli matrices and where spinor contractions are implied.
We note that I = H/2, where H is the harmonic oscillator (1/2)

∑

µ(p
2
µ + x2µ). These

functions satisfy J2 = I2, where we use bold face J for the 3-vector with components
Ji. There are also the Poisson bracket relations {I, Ji} = 0, {Ji, Jj} = ǫijk Jk. The
definition of Ji in (9) implies a map πH : C2 → R3, which we call the Hopf projection
because when restricted to the 3-sphere I = const > 0 it is the projection map of the
Hopf fibration of S3 over S2 (Cushman and Bates 1997, Holm 2011). Here R3 is the
space with coordinates J, which we call “angular momentum space” (it is the dual of
the Lie algebra of SU(2)).

We construct larger symplectic manifolds by taking products of Φ. First we
construct the symplectic manifold

Φ2j = (C2 × C
2, idz† ∧ dz + idz′† ∧ dz′), (10)
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where spinors z and z′ are coordinates in the first and second copies of C2. For
brevity we will write this as Φ2j = Φ×Φ or C2×C2, with the symplectic form in (10)
understood. We introduce primed versions of (9) to define I ′ and J′, so that Φ2j has
functions I, J, I ′ and J′ defined on it.

On Φ2j I and I ′ generate the U(1) actions, z 7→ e−iα/2z and z′ 7→ e−iα/2z′,
respectively, where α is the angle conjugate to the Hamiltonian function I or I ′.
Similarly, J and J′ generate SU(2) actions, that is, Hamiltonian function H = n · J,
where n is a unit vector, generates the action,

z 7→ u(n, α)z, z′ 7→ z′, (11)

where α is the angle conjugate to H and where

u(n, α) = e−i(α/2)(n·σ) (12)

represents an element of SU(2) in axis-angle form. Similarly, H = n ·J′ generates the
action

z 7→ z, z′ 7→ u(n, α)z′. (13)

Finally we define the symplectic manifold

Φ12j = (Φ2j)
6, (14)

with coordinates zr and z′r, r = 1, . . . , 6, where r labels the factors in (14). The
symplectic 1-form and 2-form on Φ12j are

θ =
∑

r

iz†r dzr + iz′†r dz
′
r, (15)

and

ω = dθ =
∑

r

idz†r ∧ dzr + idz′†r ∧ dz′r. (16)

By adding an r-subscript to the functions defined in (9), with or without a prime, we
obtain functions Ir, I

′
r, Jr , J

′
r, r = 1, . . . , 6 on Φ12j . By extending πH to all twelve

copies of C2 we obtain a projection πH : Φ12j → (R3)12, where the latter space is the
angular momentum space for all twelve angular momenta, Jr, J

′
r, r = 1, . . . , 6.

3.2. The A- and B-manifolds

Now we introduce two Lagrangian manifolds in Φ12j , specified as the level sets of
collections of functions that Poisson commute on the manifolds. We call these the A-
and B-manifolds. The functions defining the A-manifold and their contour values are
given by

A-set =

(

I1 · · · I6 I ′1 · · · I ′6 J123 J1′5′6 J2′6′4 J3′4′5

J1 · · · J6 J1 · · · J6 0 0 0 0

)

, (17)

where the first row contains the functions and the second row contains the contour
values, and where J123 = J1 + J2 + J3, J1′5′6 = J′

1 + J′
5 + J6, J2′6′4 = J′

2 + J′
6 + J4

and J3′4′5 = J′
3 + J′

4 + J5. Notice that the contour values of the primed I ′r are the
same as those of the unprimed Ir , that is, Jr. It is assumed in the following that the
Jr are given numbers such that a tetrahedron exists with edge lengths Jr, and that
the faces are nondegenerate so that the dihedral angles ψr are defined. In particular,
this means that Jr > 0, r = 1, . . . , 6. There are 24 functions in the A-list (six I’s,
six I ′’s and 4 × 3 = 12 components of angular momenta). For the given values of



Symplectic and Semiclassical Aspects of the Schläfli Identity 9

Jr these functions are independent and define a 24-dimensional submanifold of Φ12j

(the A-manifold). Also, since the functions Poisson commute with each other on the
A-manifold, it is Lagrangian (see the discussion in Sec. 4.3 of Aquilanti et al (2012)).

The vanishing of the four sums of three angular momenta indicated by (17)
represents four triangle conditions among the twelve angular momenta and defines
four triangles in a single copy of R3, if all twelve vectors are plotted in this space. The
choice of the particular sets of three angular momenta to form triangles is governed
by the operators of which the vector |A〉 is an eigenvector, as explained in Sec. 3 of
Aquilanti et al (2007). It is also a consequence of the rules explained in Haggard
and Littlejohn (2010) for translating a spin network into a stationary phase condition
involving collections of angular momenta.

The functions defining the B-manifold and their contour values are given by

B-set =

(

I1 · · · I6 I ′1 · · · I ′6 J11′ . . . J66′

J1 · · · J6 J1 · · · J6 0 · · · 0

)

(18)

where J11′ = J1 + J′
1 etc. Notice that the contour values of the functions Ir and

I ′r are the same as on the A-manifold (17). Now there are twelve conditions on Ir
and I ′r and 3 × 6 = 18 components of angular momentum vectors, or 30 conditions
altogether; but these are not independent, since Jr = −J′

r implies Ir = I ′r. Thus
the conditions I ′r = Jr are superfluous and can be dropped from the list, giving 24
independent conditions. Therefore the B-manifold is a 24-dimensional submanifold
of Φ12j . It is also Lagrangian, for the same reason as the A-manifold. We call the
conditions Jr + J′

r = 0 the “diangle conditions”; when they are satisfied, Jr and J′
r

are equal and opposite.

1

2

3

1′

5′2′

6′

6

3′

5

4 4′

3

12

6

4 5

Figure 2. The four triangle conditions and the six diangle conditions specify
a tetrahedron, in which each edge is represented by oppositely pointing vectors
Jr and J′

r of the same length. This tetrahedron is illustrated on the left, with
the faces pulled away from one another slightly to make the opposite vectors Jr ,
J′

r more clear. The symbols 1, 2, etc represent vectors J1, J2, while 1′, 2′ etc
represent the vectors J′

1
, J′

2
, etc. On the right the tetrahedron is reassembled,

with only the unprimed vectors shown.

3.3. Intersections and Tetrahedra

If the A- and B-manifolds intersect, then both the diangle and triangle conditions on
the twelve angular momenta hold, and the angular momenta define a tetrahedron, as
illustrated in Fig. 2. Each edge of the tetrahedron is represented by a pair of oppositely
pointing vectors Jr and J′

r. Conversely, if a tetrahedron exists with the given edge
lengths Jr, r = 1, . . . , 6, then the A- and B-manifolds intersect. Since we are assuming
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that the values of the Jr are such that a tetrahedron does exist, we are assured that
the A and B manifolds do intersect.

Generically two 24-dimensional manifolds in a 48-dimensional space intersect in
a discrete set of points (a 0-dimensional set), but the intersections of the A and B
manifolds (for the assumed values of the Jr) are 15-dimensional. The intersection
has a nongeneric dimensionality because of a “common symmetry group” between the
A- and B-manifolds, as explained in somewhat general terms in Sec. 6.2 of Aquilanti
et al (2012). The basic idea is the following. The A-list of functions (17) is the
momentum map (Abraham and Marsden 1978, Marsden and Ratiu 1999) of a group
Ga whose action on Φ12j is generated by the A-list of functions. This group is
Ga = U(1)12 × SU(2)4, where the U(1) factors are generated by the Ir and I ′r, and
the SU(2) factors are generated by the four partial sums of angular momenta, J123,
J1′5′6, J2′6′4 and J3′4′5. The action generated by one of the Ir or I ′r is the changing
of the overall phase of one of the spinors zr or z′r; for example, the Hamiltonian flow
generated by Ir is

zr 7→ e−iα/2zr, (19)

where α is the parameter of the flow (it is the angle conjugate to Ir). Under this flow
all unprimed spinors zs for s 6= r and all primed spinors are not affected. The action
generated by I ′r is similar (it only affects z′r). The flow (19) is a motion along the fiber
(the “Hopf circle”) of the Hopf fibration for the particular copy of C2 on which zr is
a coordinate; the period of the circle is α = 4π. All the functions Ir, I

′
r, Jr and J′

r

are invariant along the flow (19). The action generated by one of the triangle sums of
angular momenta, J123 for example, is the multiplication of the selected spinors (z1,
z2 and z3 in this case) by an element u ∈ SU(2), which causes the corresponding J

vectors (J1, J2 and J3 in this case) to be multiplied by R(u) ∈ SO(3), where

Rij(u) =
1

2
tr(u†σiuσj). (20)

This is the standard projection from SU(2) to SO(3). Under this action, the other J
vectors are not affected, nor are any of the Ir or I ′r. Similarly the B-list of functions
is the momentum map for a group Gb = U(1)12 × SU(2)6, where the U(1) factors are
the same as in Ga, while each of the six copies of SU(2) is generated by Jr + J′

r and
affects a pair (zr, z

′
r) for a given r (and thus the vectors Jr, J

′
r are rotated by the

same element R(u) ∈ SO(3)). Because the A- and B-manifolds are Lagrangian, these
manifolds are not only level sets of the corresponding momentum maps, but also the
orbits of the corresponding groups.

The group Gc common to Ga and Gb has an action on Φ12j that consists of
symplectic transformations common to the A- and B-actions. It is generated by Ir ,
I ′r and by

Jtot =
∑

r

Jr + J′
r, (21)

and thus it is the 15-dimensional group Gc = U(1)12 × SU(2), where the single
factor of SU(2) multiplies all spinors zr, z

′
r by a common element of SU(2). The

15-dimensional orbits of Gc are common to both the A- and B-manifolds, and thus lie
in their intersection. In fact the intersection is precisely 15-dimensional (for the given
values of Jr).

If the volume of the tetrahedron is nonzero, however, then the intersection of
the A- and B-manifolds is not connected. This is because both the tetrahedron
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A

B B

A

T1 T2

P

Q
P ′

Figure 3. The 24-dimensional A- and B-manifolds intersect in two 15-
dimensional submanifolds T1 and T2, consisting of tetrahedra of a given shape and
its image under spatial inversion. Also illustrated is the path P → Q → P ′ → P
for the integral representation of the Ponzano-Regge phase.

and its image under spatial inversion simultaneously satisfy the A- and B-conditions,
but the group Gc contains only proper rotations, and cannot map a tetrahedron of
nonzero volume into its image under inversion. These facts lie behind the schematic
illustration of the A- and B-manifolds and their intersections shown in Fig. 3, where
the two connected pieces of the intersection are labeled T1 and T2 (for “tetrahedra”,
since these intersections are the places in Φ12j where the vectors J and J′ form a
tetrahedron). That is, Fig. 3 is drawn for the case V 6= 0, for which the manifolds T1
and T2 correspond to two points of shape space S, related by spatial inversion. As
we move along T1 or T2, the only things that change are the overall phases of the 12
spinors and the overall orientation of the tetrahedron, neither of which changes the
shape.

3.4. A Path for the Ponzano-Regge Phase

The branches of the semiclassical approximation of a scalar product such as 〈A|B〉
correspond to intersections of the Lagrangian manifolds corresponding to vectors |A〉
and |B〉, and the relative phase between two branches is the integral of the symplectic
1-form along a path starting on one intersection, running along one of the Lagrangian
manifolds to the other intersection, and then back to the initial point along the other
Lagrangian manifold. This is discussed in Littlejohn (1990) and in Aquilanti et al

(2007, 2012). In the case of the Ponzano-Regge formula, the relative phase between
the two branches contained in cos(S+π/4) is 2S (dropping the π/4 which is irrelevant),
which therefore is the integral of θ in (15) along a path starting on T1, running along
the B-manifold to T2 and then back along the A-manifold to the same point of T1.
Obviously if the path is traversed in the opposite direction, we obtain a change of sign
in the value of the integral. These facts are not needed for the proof of the Schläfli
identity presented in Sec. 4, but they motivate the general approach.

Such a path can be constructed out of group actions in Ga and Gb. We start at a
point P ∈ T1, as illustrated in Fig. 3, which corresponds to a definite tetrahedron in
R3, as illustrated in Fig. 2. We write n123, n1′5′6, etc for the unit outward pointing
normals to the faces, evaluated at P . For each edge labeled by r, one of the faces
meeting at the edge contains Jr and the other contains J′

r. We take the unit normal
to the face with J′

r and dot it into Jr + J′
r , and sum over all the edges. This gives a

Hamiltonian,

H = n1′5′6 · (J11′ + J55′) + n2′6′4 · (J22′ + J66′) + n3′4′5 · (J33′ + J44′), (22)

which is a linear combination of the functions in the B-list, and so generates a motion
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along the B-manifold. Call the parameter of the flow generated by this Hamiltonian
α. We follow the flow for an elapsed parameter of α = π, which rotates each vector Jr ,
J′
r by an angle π about an axis orthogonal to itself, thereby inverting all twelve vectors

Jr, J
′
r. This maps the tetrahedron into its inverted image, taking us along a path such

as P → Q in Fig. 3 to the other branch of the intersection T2. At intermediate points
along this path we do not have a tetrahedron or even faces, that is, the four triangle
conditions for the faces are not maintained, but we do have Jr + J′

r = 0. At point Q
the inverted tetrahedron appears. Under this flow the twelve spinors are multiplied
by elements of SU(2), for example, z1 and z′1 are transformed according to

z1 7→ exp[−i(π/2)n1′5′6 · σ] z1, (23)

z′1 7→ exp[−i(π/2)n1′5′6 · σ] z′1. (24)

In addition, the action integral of the symplectic 1-form θ in (15) along the path P → Q
is πH , the value of the Hamiltonian along the flow times the elapsed parameter (this
applies to any Hamiltonian that is bilinear in the z’s and z†’s). But since Jr +J′

r = 0
along the B-manifold, the Hamiltonian is zero, and the accumulated action is zero.

Next we follow a path Q→ P ′ from T2 along the A-manifold to a point on T1, as
illustrated in Fig. 3. The path follows the Hamiltonian flow generated by

H = n123 · J123 + n1′5′6 · J1′5′6 + n2′6′4 · J2′6′4 + n3′4′5 · J3′4′5, (25)

that is, H is a sum over all the faces of the normals times the partial sums of J

vectors in the triangle conditions defining the faces. The normals are still evaluated
at P and thus are constant; since these are outward pointing normals at P , they are
inward pointing at Q. We follow the flow for an elapsed parameter of α = −π, which
causes each face to rotate by an angle π about its normal, thereby inverting all vectors
Jr, J

′
r and returning us to the original tetrahedron (at the point P ′ in Fig. 3). At

intermediate stages along the path Q → P ′ the diangle conditions are violated, but
the faces triangle conditions continue to hold so the faces are well defined. On reaching
P ′, the diangle conditions hold once again, and the tetrahedron is reassembled. Again,
the action integral vanishes, since the face vectors J123 etc are all zero along the flow.
As for the action on the spinors, in the case of z1 and z′1 it is

z1 7→ exp[+i(π/2)n123 · σ] z1, (26)

z′1 7→ exp[+i(π/2)n1′5′6 · σ] z′1. (27)

The overall effect of these two flows on the primed spinors is the identity, for
example, (24) and (27) imply z′1 7→ z′1, while the unprimed spinors suffer a change of
overall phase, for example, the effect of (23) and (26) on z1 is

z1 7→ exp[i(π/2)(a · σ)] exp[−i(π/2)(b · σ)] z1, (28)

where a = n123 and b = n1′5′6. But

exp[i(π/2)(a · σ)] exp[−i(π/2)(b · σ)] = (a · σ)(b · σ) = cosψ1 + i sinψ1(j1 · σ), (29)

where j1 = J1/J1 and ψ1 is the dihedral angle at edge 1, as defined previously. (We
have used a · b = cosψ1 and a× b = sinψ1j1.) But since

(j1 · σ)z1 = z1 (30)

the overall effect on spinor z1 is

z1 7→ eiψ1 z1, (31)
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and similarly for the other spinors. Under the two flows the tetrahedron in R3 returns
to itself but the unprimed spinors do not, instead they have moved to a different point
on their Hopf circles, which is why the point P ′ is indicated as different from the
starting point P in Fig. 3. This motion (along the Hopf circles) can be regarded as a
holonomy or geometric phase (Berry 1984) in a U(1)12 bundle (a Hopf bundle) over
angular momentum space (R3)12.

We close the loop along a path P ′ → P as in Fig. 3 in six steps, with each step
moving us along the Hopf circle of one of the spinors zr. The Hamiltonian for the r-th
step is Ir, with an elapsed parameter given by α = 2ψr. For example, in the first step
the Hamiltonian flow of I1 with parameter 2ψ1 has the effect

z1 7→ e−iψ1 z1, (32)

thereby cancelling the phase in (31) and returning z1 to its original value. The value
of ψ1 here is one at the initial condition P , but that is the same value appearing in
(31), and it is constant on T1 (and therefore it is the same as at P ′ and along the
I1-flow). The action along this I1 flow is 2ψ1I1. When all six flows under the Ir are
carried out, the total action is twice the Ponzano-Regge phase (7).

In summary, the action integrals along the first two legs of the path P → Q →
P ′ → P vanish, while that along the third gives twice the Ponzano-Regge phase. This
method of deriving the phase, a part of the Ponzano-Regge formula, is basically due to
Roberts (1999), and it is much simpler than the derivation we gave in the asymmetrical
4j-model of the 6j-symbol presented in Aquilanti et al (2012). The main advantage
of the 4j-model seems to be its close connection with the spherical phase space of the
6j-symbol, which leads to an easy derivation of the amplitude of the Ponzano-Regge
formula (due originally to Wigner (1959)). The part of this derivation that we need
for this paper is the representation of the Ponzano-Regge phase as (one half of) the
integral of the symplectic 1-form along the path P → Q→ P ′ → P .

4. Proof of the Schläfli Identity

The Schläfli identity involves variations in the edge lengths Jr, so we must consider
families of A- and B-manifolds and their intersections in which the values of Ir and I

′
r

are variable. To do this we replace the conditions Ir = I ′r = Jr with simply Ir = I ′r ,
thereby maintaining the equal lengths of vectors Jr and J′

r. The A-manifold thereby
enlarges into a manifold we call Ã, defined by Ir = I ′r , r = 1, . . . , 6 plus the four
triangle conditions, which constitute 6+ 12 = 18 independent conditions and define a
30-dimensional manifold. Similarly, the B-manifold enlarges to a manifold B̃, defined
by the six diangle conditions Jr+J′

r = 0. The conditions Ir = I ′r are not independent
of these and need not be added. Thus there are 3 × 6 = 18 independent conditions,
and B̃ is also 30-dimensional. Just as the A- and B-manifolds are Lagrangian, the
Ã- and B̃-manifolds are coisotropic, since the functions defining the level sets have
vanishing Poisson brackets among themselves on the level sets.

As for the 15-dimensional intersection manifolds T1 and T2, we have been
assuming that the values of Jr were such that a tetrahedron exists with nonzero
volume, but when we allow the Jr to be variable their values will include tetrahedra
of zero volume. These (flat) tetrahedra are equal to their own images under spatial
inversion (modulo a proper rotation), so manifolds T1 and T2 merge at such values
of the edge lengths. Therefore we define a manifold T̃ = Ã ∩ B̃; it is connected.
Manifold T̃ is specified by the union of the conditions for Ã and B̃, which are simply
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the triangle and diangle conditions taken together (again, Ir = I ′r follows from the
diangle conditions). These are not independent, because both the triangle and diangle
conditions imply the vanishing of the total angular momentum (21); so the number
of independent conditions defining T̃ is 4× 3 + 6× 3− 3 = 27, and the manifold T̃ is
21-dimensional (since 48− 27 = 21).

P (λ0)

P (λ1)

Q(λ0)

Q(λ1)

P ′(λ1)

Figure 4. A family of initial points P (λ) with differing values of the Jr generate
contours along which the action integral is twice the Ponzano-Regge phase.
Stokes’ theorem is used to prove the Schläfli identity.

We now take the point P of Fig. 3 and allow it to sweep out a curve P (λ) lying
inside T̃ , for λ0 ≤ λ ≤ λ1, where the original P is now P (λ0). For simplicity we
assume this curve does not cross any flat tetrahedra (those with zero volume). Each
P (λ) serves as the initial point for a contour with three legs, first running along the
B-manifold to a point Q(λ), representing an inverted tetrahedron, then back along the
A-manifold to a point P ′(λ), to a tetrahedron with the original shape, and then along
Hopf circles to return to the original point P (λ). The values of the Jr are fixed by the
initial point P (λ), and are constant along the contour; they are therefore functions of
λ. So are the dihedral angles ψr and the action function S, which is the integral of
θ along the path. Starting from points P (λ), these paths sweep out a 2-dimensional
surface illustrated in Fig. 4, in which the three segments of the wall, swept out by the
three legs of the paths, are illustrated.

We now integrate the symplectic form ω along the walls of this surface. On
the first (P → Q) segment we use λ and α as coordinates, where α is the evolution
parameter of the Hamiltonian (22). The integral is

∫

seg 1

ω =

∫ λ1

λ0

dλ

∫ π

0

dα ω

(

∂

∂λ
,
∂

∂α

)

. (33)

But ∂/∂α is the Hamiltonian vector field which we write as XH , so the integrand can
be written

− (iXH
ω)

(

∂

∂λ

)

= dH

(

∂

∂λ

)

=
dH

dλ
, (34)

where we use Hamilton’s equations in the form

iXH
ω = −dH, (35)

and we write the final result as dH/dλ (as an ordinary derivative) because H restricted
to the first segment of the wall is a function only of λ (it is independent of α). In fact,
H in (22) vanishes on the first segment, so dH/dλ = 0 and the integral of ω is zero
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on this segment. A similar argument shows that the integral of ω also vanishes along
the second segment, where the Hamiltonian is (25).

Thus the only contribution to the integral of ω is from the third segment,
∫

walls

ω =

∫

seg 3

ω, (36)

a result we will use later. As for the third segment, we break it into six steps as in
Sec. 3, where the r-th step uses the Hamiltonian H = Ir and the elapsed parameter
α = 2ψr. For example, in the first step we have

∫

step 1

ω =

∫ λ1

λ0

dλ

∫ 2ψ1(λ)

0

dα ω

(

∂

∂λ
,
∂

∂α

)

=

∫ λ1

λ0

dλ

∫ 2ψ1(λ)

0

dα
dI1
dλ

= 2

∫ λ1

λ0

dλ ψ1
dI1
dλ

, (37)

where we have transformed the integrand as before. Doing this for all six steps (for
all r = 1, . . . , 6), we finally obtain

∫

walls

ω = 2
∑

r

∫ λ1

λ0

ψr
dIr
dλ

dλ. (38)

Now we apply Stokes’ theorem to the integral of ω over the walls, which gives

S(λ1)− S(λ0) =
∑

r

∫ λ1

λ0

ψr
dIr
dλ

dλ, (39)

where the loop integrals of θ along the top and bottom edges of the walls give the
left-hand side and where we have cancelled a factor of 2. One can check that the sign
conventions of Stokes’ theorem are correct in (39). Finally, differentiating this with
respect to λ1 and using (7) give the Schläfli identity in the form,

∑

r

Ir
dψr
dλ

= 0. (40)

This is our proof of the Schläfli identity in Euclidean R3.

5. The First Reduction

This section and the next apply symplectic reduction, the geometrical method of
passing from a symplectic manifold with a symmetry to a smaller symplectic manifold
in which the symmetry has been eliminated. Symplectic reduction is described in
Abraham and Marsden (1978), Marsden and Ratiu (1999), Cushman and Bates (1997)
and Holm (2011). Basic elements of symplectic reduction that are called upon below
are the symplectic action of a group, the momentum map, and the formation of the
reduced symplectic manifold as the quotient of a level set of the momentum map by
the “isotropy subgroup”, which in all examples in this paper is the entire group.

We now apply symplectic reduction to the 48-dimensional phase space Φ12j =
(Φ2j)

6, producing a 36-dimensional phase space that is almost diffeomorphic to
(T ∗SU(2))6 (a certain zero level set must be handled specially, but except for this
subset of measure zero the quotient space is a power of T ∗SU(2)). Both manifolds
Ã and B̃ of Sec. 3.2 (and hence the A- and B- manifolds for all values of the Jr) are
submanifolds of the 42-dimensional set given by Ir−I ′r = 0, r = 1, . . . , 6. This is a level
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set of the momentum map with components Ir − I ′r, whose associated group is U(1)6.
Under the symplectic reduction of the given (zero) level set of the momentum map by
U(1)6 the Lagrangian A- and B-manifolds project onto Lagrangian manifolds in the
quotient space, as does the entire construction presented in Sec. 4 and illustrated in
Fig. 4. For example, the contour for the integral representation of the Ponzano-Regge
phase projects onto a contour in the reduced symplectic manifold giving another (lower
dimensional) integral representation for the same phase. Also, the surface swept out
when this contour is allowed to move by varying the Jr projects onto the reduced
space, as does the proof of the Schläfli identity based on it.

5.1. Reduction of Φ2j by U(1)

Each U(1) factor of U(1)6 acts on a single factor of Φ12j = (Φ2j)
6 for a given value of

r, so to study the reduction we restrict attention to single value of r and a single copy
of Φ2j . When we are done we just take the 6-fold product of the reduction of Φ2j by
U(1) to get that of Φ12j by U(1)6. It does not matter which copy of Φ2j we work with
so in the following we drop the r index. This same reduction was discussed by Freidel
and Speziale (2010) in connection with the classical phase space associated with spin
networks in loop quantum gravity. The following treatment of this reduction differs
from that of Freidel and Speziale in several particulars, some of which will be pointed
out as we proceed.

On the 8-dimensional phase space Φ2j = C2 × C2 the symplectic 1-form and
2-form are

θ = iz† dz + iz′† dz′ (41)

and

ω = dθ = idz† ∧ dz + idz′† ∧ dz′. (42)

On this space the Hamiltonian function H = I − I ′ generates the U(1) action,

z 7→ e−iα/2z, z′ 7→ e+iα/2z′, (43)

where α is conjugate to H . We are interested in the 7-dimensional level set L given
by I − I ′ = 0. This condition can also be written z†z = z′†z′, so L has the structure
of a cone (it is the union of a set of vector spaces passing through origin z = z′ = 0
of Φ2j). Except on the subset I = I ′ = 0 (the origin, a single point), the orbits of the
action (43) on L are circles of period 4π in the coordinate α, while the orbit through
the origin is just the origin itself (a single point).

Because of the change in the dimension of the orbit, the quotient space L/U(1)
is stratified. Let us define L̇ as L with the origin removed,

L̇ = L \ {0}, (44)

so that on L̇ the orbits are circles, and L = L̇ ∪ {0}. As for the quotient space, let us
define

Q̇ = L̇/U(1), (45)

so that as a set the entire quotient space is Q = Q̇ ∪ {0}. In the following we will
concentrate on L̇ and Q̇, the latter of which is a symplectic manifold of dimension 6.
Our aim will be to identify Q̇ topologically, to find convenient coordinates on it, and
to find its symplectic form.

It turns out that Q̇ is symplectomorphic to T ∗SU(2) with a certain subset
removed. Freidel and Speziale (2010) have stated that the quotient space is
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diffeomorphic to T ∗SU(2), but this is not quite right, since a subset of measure zero
has to be handled separately. Stratifications of this sort are treated in the theory of
“symplectic implosion” (Guillemin, Jeffrey and Sjamaar 2002).

It is somewhat awkward to demonstrate the relation between Q̇ and T ∗SU(2) in
the coordinates and in terms of the symplectic structure given so far. Instead it is
convenient to use a symplectic map which we call K2, taking us from Φ2j to another
symplectic manifold which we call Φ∗

2j , and to carry out the symplectic reduction on
Φ∗

2j . When this is done, we can use K2 to pull the reduction back to Φ2j . As a

manifold, Φ∗
2j is C

2 ×C2 with coordinates (z, z′), just as with Φ2j , but the symplectic
forms on Φ∗

2j are

θ = iz† dz − iz′† dz′, (46)

and

ω = dθ = idz† ∧ dz − idz′† ∧ dz′, (47)

that is, with a change in sign in the primed term relative to the symplectic forms (41)
and (42) on Φ2j . (The notation Φ∗

2j is slightly illogical, since the sign is changed only
in the primed term of the symplectic form.) Functions I, I ′, J and J′ are defined
on Φ∗

2j by the same formulas (9) as on Φ2j , but because of the change in sign in
the symplectic structure we have the Poisson bracket relations {J ′

i, J
′
j} = −ǫijk J ′

k

on Φ∗
2j . The other Poisson bracket relations on Φ∗

2j are the same as on Φ2j , namely,

{I, Ji} = {I ′, J ′
i} = 0 and {Ji, Jj} = ǫijk Jk. Also, any function of z, z† Poisson

commutes with any function of z′, z′†.
We now make a digression to explain some maps that will be used to construct

the map K2 : Φ2j → Φ∗
2j .

5.2. Some Useful Maps

In this section we consider the phase spaces Φ = (C2, idz†∧dz) and Φ∗ = (C2,−idz†∧
dz). The 2-component spinor z is a coordinate on both Φ and Φ∗, but the symplectic
forms are of opposite sign. Space Φ is the same one introduced in Sec. 3.1. Notice that
the phase spaces discussed in Sec. 5.1 can be written Φ2j = Φ×Φ and Φ∗

2j = Φ×Φ∗,
where it is understood that symplectic forms add under the Cartesian product.

For motivational reasons we explain the semiclassical significance of Φ and Φ∗.
Space Φ is the phase space corresponding to the Hilbert spaceH = L2(R2). We viewH
as the space of wave functions of the quantum 2-dimensional harmonic oscillator, which
is used in the Schwinger (1952) and Bargmann (1962) treatment of the representations
of SU(2). We also viewH as a space of Dirac ket vectors. To say thatH corresponds to
Φ means at least two things. One is that linear operators from H to itself are mapped
into functions on Φ by means of the Weyl correspondence (Berry 1977, Balasz and
Jennings 1984, Ozorio de Almeida 1998). Another is that wave functions ψ(x1, x2)
in H are represented by Lagrangian manifolds in Φ; the phase of the semiclassical
approximation to the wave function is the integral of the symplectic 1-form p dx (which
differs from iz† dz by an exact differential) along the Lagrangian manifold, times 1/~.

We define H∗ as the space dual to H, that is, H∗ contains bra vectors or
complex valued linear functionals on H. We can also think of H∗ as containing wave
functions ψ∗(x1, x2), that is, a wave function in H∗ is the image under the metric
Ĝ : H → H∗ : ψ(x1, x2) 7→ ψ∗(x1, x2) of some wave function in H. The metric Ĝ
is an antilinear map. If ψ(x1, x2) ∈ H corresponds to a Lagrangian manifold in Φ,
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then ψ∗(x1, x2) ∈ H∗ corresponds to the same Lagrangian manifold in Φ∗. However,
since the symplectic 1-form in Φ∗ is the opposite of that in Φ, its integral along the
Lagrangian manifold in Φ∗ is opposite the corresponding integral in Φ. This inverts
the phase of the semiclassical approximation to the wave function, which is just what
we want for the complex conjugated wave function.

These considerations motivate the following definition of the classical map G
corresponding to the metric Ĝ:

G : Φ → Φ∗ : z 7→ z. (48)

In other words, G is the identity as far as the coordinates z are concerned, but as a map
it connects different spaces. Moreover, it is antisymplectic, since the push-forward of
the symplectic form on Φ under G is minus the symplectic form on Φ∗.

Another map between Φ and Φ∗ is defined by

K : Φ → Φ∗ : z 7→ U0z̄, (49)

where z̄ is the complex conjugated column spinor and where

U0 = e−i(π/2)σy =

(

0 −1
1 0

)

. (50)

Under K the symplectic form idz†∧dz on Φ is pushed forward into the form −idz†∧dz
on Φ∗ which is the same as the symplectic form on Φ∗ so the map K is symplectic.
It is the classical analog of the quantum map K discussed in Aquilanti et al (2012),
modulo phase conventions that we will not go into here. Suffice it to say that the
quantum map K is a linear map between H and H∗, unlike Ĝ, which is antilinear. We
see that linear maps in quantum mechanics correspond to symplectic maps classically,
and quantum antilinear maps to classical antisymplectic maps.

Under K the functions Ji on Φ are pushed forward into the functions −Ji on
Φ∗, while I becomes I. Since K is symplectic the formation of the Poisson bracket
commutes with the push-forward; for example, computing {J1, J2} on Φ gives J3,
which pushes forward into −J3; but J1 and J2 push forward into −J1 and −J2 whose
Poisson bracket on Φ∗ is computed according to {−J1,−J2} = {J1, J2} = −J3, where
the final minus sign comes from the inverted symplectic structure on Φ∗. The answers
are the same.

A third map is time-reversal, defined by

Θ : Φ → Φ : z 7→ U0z̄. (51)

In the coordinates z, Θ is defined by the same equation as K, but unlike K it maps Φ
to Φ so it is antisymplectic. We call Θ time-reversal because it is the classical analog
of the quantum time-reversal operator (Messiah 1966), an antilinear operator that
inverts the direction of angular momenta. The action shown in (51) is the same as
that of the quantum time-reversal operator on the spinor of a spin-1/2 particle. Under
Θ, the functions Ji go into −Ji, while I goes into I, just as under K; but now these
function are on Φ, not Φ∗. We note that the three maps introduced are related by

Θ = G−1 ◦K. (52)

Considered as a map from C2 to C2, time-reversal is an antiunitary operator
satisfying Θ†Θ = 1. It has the property

Θ†σiΘ = −σi. (53)
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From this follows the cited transformation properties of I and J. For example, using an
obvious notation for the scalar product of two 2-component spinors and the properties
of antilinear operators we have

I =
1

2
z†z =

1

2
〈z, z〉 7→ 1

2
〈Θz,Θz〉 = 1

2
〈z,Θ†Θz〉 = 1

2
〈z, z〉 = Ī = I, (54)

where we have used the fact that I is real. Similarly, we have

Ji =
1

2
z†σiz =

1

2
〈z, σiz〉 7→

1

2
〈Θz, σiΘz〉

=
1

2
〈z,Θ†σiΘz〉 = −1

2
〈z, σiz〉 = −J̄i = −Ji, (55)

since Ji is real. Equation (53) also implies that time-reversal commutes with rotations,
that is,

Θ†gΘ = g, (56)

for all g ∈ SU(2). This follows if we write g in the axis-angle form (12) since the
antilinear Θ inverts the signs of both σi and i.

5.3. Reduction of Φ∗
2j by U(1)

We return now to the discussion interrupted at the end of Sec. 5.1. We define the
symplectic map

K2 : Φ2j → Φ∗
2j : (z, z

′) 7→ (z,Kz′), (57)

in which theK map is applied only to the second argument. The 2 subscript onK2 is a
reminder of this fact. Note that Φ2j may be regarded as the phase space corresponding
to vectors |ψ〉|φ〉, where |ψ〉 and |φ〉 are state vectors for the 2-dimensional harmonic
oscillator, while Φ∗

2j may be regarded as the phase space corresponding to vectors
|ψ〉〈φ|.

We will carry out the reduction of Φ2j by U(1) described in Sec. 5.1 by mapping
the entire construction over to Φ∗

2j via K2. Under the symplectic map K2 symplectic
group actions, momentum maps and level sets in Φ2j are mapped into the same types
of objects in Φ∗

2j . For example, the function I − I ′ on Φ2j maps into I − I ′ on Φ∗
2j ,

whose Hamiltonian flow on Φ∗
2j is given by

(z, z′) 7→ (e−iα/2z, e−iα/2z′), (58)

with a change in sign on the second half as compared with (43) due to the change in
sign in the second term of the symplectic form. This is the U(1) action on Φ∗

2j by
which we carry out the reduction. The fact that both spinors z and z′ transform in
the same way under this action is the main fact that makes the reduction on Φ∗

2j more
transparent than that on Φ2j .

The level set I − I ′ = 0 is the same 7-dimensional cone discussed in Sec. 5.1. We
use the same symbol L for it on Φ∗

2j as on Φ2j , and we define L̇ and Q̇ exactly as
in (44) and (45). Obvious functions on Φ∗

2j that are constant on the orbits (58) and

which therefore can be projected onto the quotient space are quantities bilinear in z†

and z or in z′† and z′, including I, I ′, J and J′.
Another set of functions that can be projected onto the quotient space is

constructed as follows. We begin by defining a map from C2 to 2×2 complex matrices.
If z ∈ C2, then the map is

z 7→M(z) = (z,Θz) =

(

z1 −z̄2
z2 z̄1

)

, (59)
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where (z,Θz) means the matrix whose two columns are z and Θz. We note that
detM(z) = 2I, so if I 6= 0 then M(z) has an inverse, and, in fact,

M(z)/
√
2I ∈ SU(2). (60)

Thus M(z) can be identified with a quaternion, that is, it can be written q0 − iq · σ,
where (q0,q) is a real 4-vector.

Now let (z, z′) ∈ L̇ (so that I = I ′ 6= 0), and let g be an element of SU(2) such
that

z = gz′. (61)

Then by (56) we have Θz = gΘz′, and

M(z) = gM(z′), (62)

or,

g =M(z)M(z′)−1 =
1

2I

(

z1 −z̄2
z2 z̄1

)(

z̄′1 z̄′2
−z′2 z′1

)

. (63)

Thus, for (z, z′) ∈ L̇, there is a unique g ∈ SU(2) such that z = gz′, given as an
explicit function of z and z′ by (63). Moreover, the matrix g, that is, its components,
are constant along the orbits (58). This is obvious since g in z = gz′ remains the same
if both z and z′ are multiplied by the same phase.

We remark that the map z → M(z) can be used to show the equivalence of the
Hopf circles as defined by us, that is, z 7→ e−iα/2z, following the Hamiltonian flow of
I on Φ = (C2, idz† ∧ dz), with the definition used by Freidel and Speziale (2010) and
other authors, which is

M(z) 7→M(z)u(ẑ, α) = (z,Θz)

(

eiα/2 0
0 e−iα/2

)

= (eiα/2z,Θeiα/2z) =M(eiα/2z), (64)

where u(ẑ, α) is a spin-1/2 rotation of angle α about the z-axis and where we use
the antilinearity of Θ. In the latter definition the Hopf circles are identified with the
cosets in SU(2) with respect to the subgroup U(1) of rotations about the z-axis. The
two definitions of the Hopf circles are the same, apart from a switch in the direction
of traversal.

We use these results to construct global coordinates on L̇. A point of L̇ can be
identified with a pair (z, z′) such that I = I ′ 6= 0. But in view of the uniqueness of
g ∈ SU(2) such that z = gz′, such a point can also be uniquely identified by the pair
(z, g) or the pair (g, z′), where z = gz′ and where |z| 6= 0 and |z′| 6= 0. Moreover, any
such pair, in either version, corresponds to a unique point of L̇, and either pair can
be taken as coordinates on L̇. Defining

Ċ
2 = C

2 \ {0}, (65)

we see that L̇ is diffeomorphic to Ċ2×SU(2) and to SU(2)×Ċ2 via the two coordinate
systems (z, g) and (g, z′).

When we subject a point of L̇ with coordinates (z, g) to the action (58), we have
z 7→ e−iα/2z, g 7→ g; or, in coordinates (g, z′), we have z′ 7→ e−iα/2z′, g 7→ g. In either
case, the action is a motion along the Hopf circle in one of the two (z or z′) factors,
while g is left invariant. So the quotient space is obtained by dividing the Ċ2 factor in
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the two factorizations of L̇ by the Hopf action, while leaving the SU(2) factor alone.
The result is

Q̇ ∼= Ṙ
3 × SU(2) ∼= SU(2)× Ṙ

3, (66)

where ∼= means “is diffeomorphic to” and where

Ṙ
3 = R

3 \ {0} =
Ċ3

U(1)
. (67)

In the final quotient operation the projection is the Hopf map πH discussed below
(9), so that coordinates on Q̇ are either (J, g) or (g,J′), where Ji = (1/2)z†σiz and
J ′
i = (1/2)z′†σiz

′. Vectors J and J′ belong to Ṙ
3 and are related by

J = R(g)J′, (68)

where R(g) is defined by (20). This can be proved with the relation,

g†σig =
∑

j

Rij(g)σj , (69)

essentially a statement of the coadjoint representation of SU(2).
The cotangent bundle T ∗SU(2) is diffeomorphic to R3 × SU(2) or SU(2) × R3,

where R
3 is the dual of the Lie algebra g

∗. This is proved by taking an element of
T ∗SU(2), which is a 1-form at a point g ∈ SU(2), and pulling it back to the identity
by either left or right translations. The pulled-back form is then expressed in some
basis in g

∗. In view of (66) our space Q̇ is diffeomorphic to T ∗SU(2) minus the zero
section, which we write as

Q̇ ∼= ˙T ∗SU(2) = {α ∈ T ∗SU(2) |α 6= 0}. (70)

Having found the topology of our quotient space and convenient coordinates on it,
we now work out the symplectic form and show that it is identical to the natural
symplectic form on ˙T ∗SU(2).

5.4. Symplectic Structure on Q̇

The symplectic structure on Q̇ can be obtained simply by working out the Poisson
brackets of the coordinates (J, g) or (g,J′) on Q̇, where g means the matrix with
components gµν (a matrix in SU(2), not to be confused with a metric). These
Poisson brackets can be computed on Φ∗

2j using the symplectic structure (47), and

they survive unaltered when projected onto Q̇. The brackets involving J and J′ are
not difficult, since these vectors are the generators of SU(2) actions on z and z′, and
the brackets {gµν , gαβ} can be worked out from the explicit expressions (63). But the
latter calculation is lengthy and uninspiring. A better approach is to work with the
symplectic form.

The symplectic 2-form (47) can be restricted to L̇, where it is no longer symplectic
but it is the pull-back under the projection map of the symplectic form on Q̇. This
can be used to find the symplectic form on Q̇. As a practical matter, this means using
the defining relation of L (that is, I − I ′ = 0) to restrict ω to L̇, and then expressing
the result in terms of the coordinates on Q̇ and their differentials. Since we have two
coordinate systems on Q̇, this is to be done in two different ways.
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Actually this process can be carried out on the symplectic 1-form (46). Since
I − I ′ = 0 implies z = gz′ for g ∈ SU(2), on L̇ we can set z′ = g†z and
dz′ = dg†z + g† dz, or,

θ = iz† dz − iz′† dz′ = −iz†g dg†z = −i tr((zz†)g dg†)
= −iI tr(g dg†)− iJ · tr(σg dg†), (71)

where we have used

zz† = I + J · σ. (72)

In (72) I is the function defined in (9), not the identity matrix; multiplication of I by
the identity matrix is understood. However, since g ∈ SU(2) we have gg† = g†g = 1
and det g = 1, or,

dg g† + g dg† = 0,

dg†g + g† dg = 0,
(73)

and

tr(g† dg) = tr(g dg†) = 0. (74)

These imply

θ = −iJ · tr(σg dg†) = iJ · tr(σdg g†). (75)

Similarly eliminating z in favor of g and z′ gives

θ = iJ′ · tr(σg†dg) = −iJ′ · tr(σ dg†g). (76)

These are four expressions for the symplectic 1-form on Q̇.

5.5. Symplectic Structure on T ∗SU(2)

In the following we regard SU(2) as a 3-dimensional submanifold of 2 × 2 complex
matrix space, that is, C4. At some risk of confusion we use g to denote a point of
SU(2) as well as a complex matrix with components gµν . At the identity element the
tangent space (the Lie algebra) is spanned by three tangent vectors {ei, i = 1, 2, 3},
defined by

ei g = − i

2
σi, ei g

† =
i

2
σi. (77)

In these equations g can be thought of as a matrix of complex functions (the
components gµν) defined on matrix space or on the SU(2) submanifold thereof; and
ei can be thought of either as vectors in T ∗SU(2) at the identity or vectors in the
tangent space to matrix space at the same point. In the following we prefer to write
these equations in a slightly different form,

ei(dg) = − i

2
σi, ei(dg

†) =
i

2
σi. (78)

where now dg means the matrix of differential forms, the differentials of the functions
just introduced, either on matrix space or restricted to the SU(2) submanifold, and
where the vector ei acts on a differential form in the usual way. These equations define
ei, which can also be written

ei = − i

2

∑

µν

(σi)µν
∂

∂gµν
+
i

2

∑

µν

(σi)µν
∂

∂ḡνµ
, (79)
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expressing them as linear combinations of tangent vectors to matrix space. These
linear combinations are tangent to the submanifold SU(2) at the identity.

Now transporting ei to an arbitrary point g ∈ SU(2) by left and right translations,
we obtain the left- and right-invariant vector fields on SU(2), defined by their actions
on the matrices of differential forms dg and dg†,

XL
i (dg) = − i

2
gσi, XL

i (dg
†) =

i

2
σig

†,

XR
i (dg) = − i

2
σig, XR

i (dg
†) =

i

2
g†σi,

(80)

where the vector fields are evaluated at g ∈ SU(2) (the same g that appears on the
right-hand sides). These definitions imply

[XL
i , X

L
j ] = ǫijkX

L
k , [XR

i , X
R
j ] = −ǫijkXR

k , (81)

and

[ei, ej ] = ǫijk ek, (82)

showing that the Lie algebra in the differential geometric sense agrees with the matrix
Lie algebra of the matrices {−(i/2)σi, i = 1, 2, 3}.

Now we define 1-forms on SU(2),

ρiL = i tr(σig
† dg) = −i tr(σi dg†g),

ρiR = −i tr(σig dg†) = i tr(σi dg dg
†).

(83)

These could also be thought of as 1-forms on matrix space, but the two different
versions given are only equal when restricted to SU(2). Then by a direct calculation
we find

XL
i (ρ

j
L) = iXL

i [tr(σjg
† dg)] =

1

2
tr(σjg

†gσi) = δij , (84)

and similarly we find XR
i (ρ

j
R) = δij . Therefore ρiL and ρiR are respectively the left-

and right-invariant 1-forms on SU(2). Then (81) implies

dρiL = −1

2
ǫijk ρ

j
L ∧ ρkL, dρiR =

1

2
ǫijk ρ

j
R ∧ ρkR. (85)

The definitions (83) were motivated by the expressions (75) and (76), but note
that ρiL and ρiR are forms on SU(2), while the forms in (75) and (76) are on Q̇.

We are also interested in the symplectic 1-form on T ∗SU(2), which is constructed
according to the procedure described by Arnold (1989), p. 202. On any manifold M
we let α ∈ T ∗M , so that α is a 1-form at some point x ∈ M . Then we define θ,
the symplectic 1-form on T ∗M , by θ|α = π∗α, where π : T ∗M → M is the bundle
projection. To apply this procedure to T ∗SU(2) we let α ∈ T ∗SU(2) so that α is a
1-form on SU(2) at a point g ∈ SU(2), and we express α in terms of its components
with respect to the bases {ρiL} and {ρiR} at g,

α =
∑

i

αLi ρ
i
L =

∑

i

αRi ρ
i
R. (86)

Then (αRi , g) and (g, αLi ) are two coordinate systems on T ∗SU(2). In terms of these
coordinates the symplectic 1-form is

θ =
∑

i

αLi ρ
i
L =

∑

i

αRi ρ
i
R, (87)

that is, the same formula but now with a reinterpretation of ρiL and ρiR, which have
been pulled back from SU(2) to become forms on T ∗SU(2).
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5.6. Identifying Q̇ and ˙T ∗SU(2)

We now have two coordinate systems on Q̇, (Ji, g) and (g, J ′
i); and two on ˙T ∗SU(2),

(αRi , g) and (g, αLi ). Comparing the forms (75) and (87) and using the definitions
(83), we see that if coordinates (αRi , g) on T ∗SU(2) are identified with (Ji, g) on
Q̇ then the symplectic 1-forms agree. That is, if we just set Ji = αRi , then the

identification between Q̇ and ˙T ∗SU(2) is a symplectomorphism. Similarly, setting

J ′
i = αLi produces another symplectomorphism between Q̇ and ˙T ∗SU(2). These are

the same symplectomorphisms, because on T ∗SU(2) the left- and right- components
of a form are related by the coadjoint representation,

αRi =
∑

j

Rij(g)α
L
j , (88)

where both forms are evaluated at the group element g. But under our coordinate
transformations this is the same as (68) on Q̇. With these identifications, we can write

the symplectic 1-form on Q̇ ∼= ˙T ∗SU(2) as

θ =
∑

i

Ji ρ
i
R =

∑

i

J ′
iρ
i
L. (89)

This is valid on the version of Q̇ ∼= ˙T ∗SU(2) that is derived from Φ∗
2j by symplectic

reduction. There is another version of Q̇ that we now describe.

5.7. Pulling the Reduction Back to Φ2j

We now pull back the reduction that we have just carried out on Φ∗
2j to Φ2j via the

symplectic map K2, defined in (57). The relation defining the coordinates (z, g) or
(g, z′) on L̇, which is z = gz′ on Φ∗

2j , becomes z = gΘz′ on Φ2j . When this is used to

express the symplectic form (41) on L̇ and thence on Q̇, we obtain

θ = −iJ · tr(σg dg†) = iJ · tr(σdg g†)
= −iJ′ · tr(σg†dg) = iJ′ · tr(σ dg†g), (90)

that is, with a minus sign in the primed expressions relative to (76). This sign is
easily understood as the effect of K2 on the functions J′ (that is, they are mapped
into −J′). Equation (89) in turn implies that when reducing from Φ2j , Q̇ is identified

with ˙T ∗SU(2) by Ji = αiR and J ′
i = −αiL (with a minus sign in the primed expression).

Thus the symplectic 1-form on ˙T ∗SU(2), when obtained by reduction from Φ2j , is

θ =
∑

i

Ji ρ
i
R = −

∑

i

J ′
i ρ

i
L. (91)

Similarly, the relation (68), which applies to Q̇ ∼= ˙T ∗SU(2) when derived from Φ∗
2j ,

becomes

J = −R(g)J′, (92)

when ˙T ∗SU(2) is obtained from Φ2j .
From (91) we obtain the symplectic 2-form ω = dθ,

ω =
∑

i

dJi ∧ ρiR +
1

2

∑

ijk

ǫijk Ji ρ
j
R ∧ ρkR,

= −
∑

i

dJ ′
i ∧ ρiL +

1

2

∑

ijk

ǫijk J
′
i ρ

j
L ∧ ρkL, (93)
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where we have used (85). The matrix of the components of ω in the bases (ρiR, dJi)

along the rows and (ρjR, dJj) along the columns is

ωab =

(

ǫijk Jk −δij
δij 0

)

, (94)

where a, b = 1, . . . , 6. Inverting this we obtain the matrix of the Poisson tensor in the
bases (XR

i , ∂/∂Ji) along the rows and (XR
j , ∂/∂Jj) along the columns,

(ω−1)ab =

(

0 δij
−δij ǫijk Jk

)

(95)

This in turn implies that the Poisson bracket of two functions on Q̇ ∼= ˙T ∗SU(2), when
obtained by reduction from Φ2j , is

{F,G} =
∑

i

[

(XR
i F )

∂G

∂Ji
− ∂F

∂Ji
(XR

i G)

]

+ J ·
(

∂F

∂J
× ∂G

∂J

)

. (96)

Carrying out the same procedure on the primed version of the symplectic form, we
obtain

ω = −
∑

i

dJ ′
i ∧ ρiL +

1

2

∑

ijk

ǫijk J
′
i ρ

j
L ∧ ρkL, (97)

and

{F,G} =
∑

i

[

−(XL
i F )

∂G

∂J ′
i

+
∂F

∂J ′
i

(XL
i G)

]

+ J′ ·
(

∂F

∂J′
× ∂G

∂J′

)

.(98)

To check these calculations (especially the signs) we can use the Poisson brackets

(96) or (98) to study various group actions on Q̇ ∼= ˙T ∗SU(2). For example, the
Hamiltonian H = n · J, where n is a unit vector, produces the flow

dJ

dα
= n× J, (99)

dg

dα
=

∑

i

ni(X
i
R g) = − i

2
(n · σ)g, (100)

where we use (96) and (80) and where α is the angle conjugate to H . These have the
solutions,

J 7→ R(n, α)J, g 7→ u(n, α)g, (101)

where u(n, α) is defined by (12) and where R and u are related by (20). Similarly, the
flow generated by H = n · J′ is

dJ′

dα
= n× J′, (102)

dg

dα
=

∑

i

ni(X
L
i g) =

i

2
g(n · σ), (103)

with solutions,

J′ 7→ R(n, α)J′, g 7→ gu(n, α)−1. (104)

These are the expected actions of SU(2) (left and right) on ˙T ∗SU(2), given the actions
(11) and (13) on Φ2j . That is, one set is mapped into the other through the relation
z = gΘz′.
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Another Poisson bracket of importance is

{Ji, J ′
j} = 0, (105)

one that is easiest to derive back on Φ2j , where J is a function of z and z†, and J′

is a function of z′ and z′†. On ˙T ∗SU(2) the vanishing of this Poisson bracket is a
reflection of the fact that left and right translations commute. This Poisson bracket
implies that J′ is constant along the J-flow (101), and J is constant along the J′-flow
(104).

Another Hamiltonian function is of interest, namely, I = I ′ = |J| = |J′|. If α is
the conjugate angle, then Hamilton’s equations are

dg

dα
= − i

2J
(J · σ)g = +

i

2J
g(J′ · σ) (106)

dJ

dα
=
dJ′

dα
= 0, (107)

where the two forms of the g-equation come from the two versions of the Poisson
bracket (96) or (98), or through the use of (69) and (92); and the J- and J′- equations
follow from (105). These equations have the solution,

g 7→ u(j, α)g = gu(j′, α)−1, (108)

where j = J/J and j′ = J′/J and where J and J′ are constant. The orbit in ˙T ∗SU(2)
is a circle upon which J and J′ are constant; the group is U(1).

Finally, let us consider the Hamiltonian function n · (J + J′). Since J and J′

commute, the action is the product of the left and right actions shown in (101) and
(104), that is,

g 7→ u(n, α)gu(n, α)−1, J 7→ R(n, α)J, J′ 7→ R(n, α)J′. (109)

5.8. Manifolds on the Quotient Space

The A- and B-manifolds, defined as submanifolds of Φ12j by (17) and (18), are subsets
of the level set L of the momentum map of the first reduction, that is, the conditions
Ir = I ′r, r = 1, . . . , 6 hold on both the A- and B-manifolds. Moreover, the A- and B-
manifolds are both invariant under the U(1)6 group action of that reduction, that
is, they are composed of a union of orbits of this group. This means that they
survive the projection onto the quotient space [ ˙T ∗SU(2)]6, so long as none of the edge
lengths is allowed to be zero (the condition Jr > 0 was understood in our original
formulation of these manifolds). The same is true of the larger Ã- and B̃-manifolds,

as long as we exclude zero edge lengths. On a single copy of ˙T ∗SU(2), the condition

I = I ′ = |J| = |J′| is automatic, so on [ ˙T ∗SU(2)]6 the A-manifold is defined as the
level set Ir = Jr, r = 1, . . . , 6, plus the four triangle conditions seen in (17), a total
of 6 + 4 × 3 = 18 independent conditions that specify an 18-dimensional Lagrangian
manifold in [ ˙T ∗SU(2)]6.

As for the B-manifold in [ ˙T ∗SU(2)]6, it is the level set |Jr| = Jr, r = 1, . . . , 6
plus the six diangle conditions, Jr + J′

r = 0, r = 1, . . . , 6, nominally 6 + 3 × 6 = 24
conditions. However, these are not all independent. We examine the question of
independence in a single copy of ˙T ∗SU(2), in which we consider the submanifold
defined by J + J′ = 0 and |J| = J where J > 0 is given. We call this submanifold

ΛJ ⊂ ˙T ∗SU(2). Let g 6= ±1 (1 means the identity in SU(2)) be a group element, and
consider the intersection of the fiber T ∗

g SU(2) over g with ΛJ . Points of this fiber are
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g = u(a, φ)SU(2)+1 −1

S+ S−

T ∗
g SU(2)

J = Ja

J′ = Ja

Figure 5. A schematic illustration of the 3-dimensional Lagrangian submanifold
ΛJ ∈ T ∗SU(2) for J > 0. The set ΛJ consists of two 3-dimensional sections over
SU(2) \ {±1}, plus two 2-spheres S+ and S− over ±1. Each section intersects
the fiber T ∗

g SU(2) over g = u(a, φ) 6= ±1 in one point; on the upper (unshaded)
sheet, the point is J = Ja = −J′, while on the lower (shaded) sheet, the point is
J = −Ja = −J′.

covectors at g, whose components with respect to the right- and left-invariant bases
are J and −J′. On the intersection these components satisfy J = −J′ as well as (92).
Since we are assuming J 6= 0, (92) can only be satisfied if J = −J′ is parallel or
antiparallel to the axis of the group element g. That is, if we write g in axis-angle
form, g = u(a, φ), where a is a unit vector, then we must have

J = ±Ja, J′ = ∓Ja. (110)

We exclude g = ±1 because only for g 6= ±1 is the axis a unique unit vector in
R3. Therefore over SU(2) \ {±1} the manifold ΛJ consists of two sections of the
bundle T ∗SU(2), so it is 3-dimensional. It is also Lagrangian, being the level set of
functions that commute on the level set. As for the points g = ±1, here R(g) = I
(the identity 3× 3 rotation) and the intersection of T ∗

g SU(2) with ΛJ is the 2-sphere
|J| = |J′| = J 6= 0. This means that the Lagrangian manifold ΛJ is vertical in two
dimensions over g = ±1 (these points are second order caustics). The two branches
of ΛJ over SU(2) \ {±1} merge together at g = ±1, and ΛJ is connected. The
manifold ΛJ for J > 0 is illustrated in Fig. 5. Finally, although the set J = 0 (that

is, J = −J′ = 0) is not a part of ˙T ∗SU(2) it does belong to T ∗SU(2); it is just the
zero section of the bundle, which is diffeomorphic to SU(2) itself, and is therefore 3-
dimensional. The manifolds ΛJ for J ≥ 0 form a 1-parameter family of 3-dimensional
Lagrangian manifolds in T ∗SU(2).

Finally, the B-manifold is the six-fold product ΛJ1
× . . . × ΛJ6

; it is an 18-

dimensional Lagrangian submanifold of the quotient space [ ˙T ∗SU(2)]6.
As for the enlarged manifolds Ã and B̃, if we exclude zero edge lengths then

these project onto 24-dimensional submanifolds of [ ˙T ∗SU(2)]6. Manifold Ã is specified
simply by the four triangle conditions, that is 4 × 3 = 12 scalar conditions. As for
manifold B̃, on a single copy of ˙T ∗SU(2) let us define

Λ =
⋃

J>0

ΛJ , (111)
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which we can extend to J ≥ 0 on T ∗SU(2) when relevant. Then Λ is a 4-dimensional

submanifold of ˙T ∗SU(2) or T ∗SU(2), and the manifold B̃ is the 24-dimensional subset

of [ ˙T ∗SU(2)]6 given by Λ6. It is also the level set of the diangle conditions Jr+J′
r = 0,

r = 1, . . . , 6; these are 3× 6 = 18 conditions, the same ones that define B̃ as a subset
of Φ12j , but only 12 are independent on [T ∗SU(2)]6, as indicated by the fact that B̃
is 24-dimensional.

Now we return to Fig. 3 and consider the projection of the manifolds illustrated
there onto the quotient space [ ˙T ∗SU(2)]6. The projections of the A- and B-manifolds
have just been described; each loses six dimensions upon projection, becoming 18-
dimensional, because each is a union of 6-dimensional orbits of the symmetry group
U(1)6. The same applies to their intersections T1 and T2, which drop from 15

dimensions to 9. The (projected) 9-dimensional versions of T1 and T2 on [ ˙T ∗SU(2)]6

are the orbits of a 9-dimensional common group, which is worth describing.
The momentum map for the common group consists of the six functions Ir =

|Jr| = |J′
r| on [ ˙T ∗SU(2)]6, as well as the three functions in Jtot, defined by (21). The

group itself is U(1)6×SU(2). As for the Ir, the flow of each one acts on only one copy

of ˙T ∗SU(2), and that action was presented in (108) and below. Thus the set of the six
Ir generates an action of U(1)6 with orbits that are 6-tori, upon which the vectors Jr
and J′

r are constant. Since the diangle and triangle conditions depend only on these
vectors, if they are satisfied at one point on the 6-torus, they are satisfied at all points
on it; thus, the projected T1 and T2 manifolds in ˙T ∗SU(2) are unions of such orbits. As
for Jtot, this is a sum over r of vectors of the form J+J′ for each r; the flow generated
by each one of these is given by (109). The effect of the SU(2) group action is thus
to conjugate each gr by the same element of SU(2), while rotating all of the vectors
Jr and J′

r by the corresponding rotation in SO(3). The latter leaves the diangle and
triangle conditions invariant, thus maintaining the conditions for a tetrahedron. Thus,
the projected manifolds T1 and T2 are invariant under this action. Assembling these
facts, one can show that the manifolds T1 and T2 in ˙T ∗SU(2) consist of precisely one
9-dimensional orbit of the group U(1)6 × SU(2) (for the assumed values of the Jr).

Finally, the contour P → Q → P ′ → P illustrated in Fig. 3 projects onto a
similar contour in [ ˙T ∗SU(2)]6. Also, since the symplectic 1-form on Φ12j = Φ6

2j is

the pull-back of that on [ ˙T ∗SU(2)]6, the integrals of the symplectic 1-forms along the
respective contours are the same. (In general in symplectic reduction, it is only the
symplectic 2-forms that are guaranteed to be related by the pull-back, but in this
example it works for the 1-forms.) This means that the integral representation of the

Ponzano-Regge phase presented in Sec. 3.4) projects onto [ ˙T ∗SU(2)]6.

Similarly, the manifolds illustrated in Fig. 4 also project onto [ ˙T ∗SU(2)]6, losing
six dimensions in the process. The proof of the Schläfli identity given in Sec. 4 and
based on these manifolds also carries over to the quotient space with just a change
of context. One of the manifolds used in this proof is T̃ , which is the union of all
manifolds T1 and T2 for all values of the Jr (we may exclude Jr = 0). This is the
manifold of tetrahedra, and being a 6-parameter family of 9-dimensional manifolds, it
is 15-dimensional.

5.9. Semiclassical Interpretation of ΛJ

We make some final remarks of a semiclassical nature concerning the Lagrangian
manifolds ΛJ ⊂ T ∗SU(2). Whenever a Lagrangian manifold occurs in a classical
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context it is useful to ask what its semiclassical significance is. In the case of the ΛJ
it is easiest to answer this question with respect to the version of T ∗SU(2) obtained
from Φ∗

2j rather than from Φ2j . In the following we will proceed somewhat intuitively,
stating several plausible facts without proof and switching back and forth between the
classical geometry and the corresponding objects and operations in the linear algebra
of the corresponding quantum systems.

For a given J , ΛJ ⊂ T ∗SU(2) is the 3-dimensional level I = |J| = J , J = J′. Let

us denote its preimage under the projection map : L̇→ ˙T ∗SU(2) by MJ , which is the
level set I = J , J = J′ inside Φ∗

2j . Then MJ ⊂ L̇ ⊂ Φ∗
2j , and MJ is a 4-dimensional

Lagrangian manifold in Φ∗
2j . It will be easiest to explain the semiclassical significance

of MJ first, and then to turn to ΛJ .
We denote the Hilbert space of two harmonic oscillators by H as above.

As explained by Schwinger (1952) and Bargmann (1962), H carries a unitary
representation of SU(2) which we denote by g 7→ U(g), and under this action H
decomposes into one carrier space of irrep j for each j,

H =
⊕

j

Hj . (112)

A convenient basis on H is {|jm〉, ∀j,m}, where “∀j,m” means all j and m allowed
by the usual restrictions on angular momentum quantum numbers. A basis in Hj is
the restricted set {|jm〉, ∀m}.

The Hilbert space corresponding to Φ∗
2j is H ⊗ H∗, that is, it consists of linear

combinations of vectors of the form |φ〉〈ψ|, in Dirac notation. These vectors are
otherwise linear operators : H → H. A convenient basis on H ⊗ H∗ is the set
{|jm〉〈j′m′|, ∀j, j′,m,m′}. Now the subset of Φ∗

2j indicated by I = I ′, that is, the
set L ⊂ Φ∗

2j , corresponds to the subspace of H⊗H∗ on which j = j′. Let us call this
space L ⊂ H⊗H∗. Space L is spanned by {|jm〉〈jm′|, ∀j,m,m′}, and it contains the
operators : H → H that leave each irreducible subspace Hj invariant. That is, the
operators in L are are block diagonal in the |jm〉 basis. In summary, L is the space
of operators corresponding semiclassically to the manifold L.

Restricting the level set further by requiring that I = I ′ = J for a given J , we
obtain a classical submanifold of Φ∗

2j that corresponds to operators that are linear
combinations of the set {|jm〉〈jm′|, ∀m,m′}, that is, operators in L with a fixed value
of j. These operators map Hj into itself for the given j, while annihilating all vectors
in Hj′ for j

′ 6= j. Let us call this space Lj ⊂ L; it has dimensionality (2j + 1)2.
Restricting the level set I = I ′ = J further by adding J = J′, we obtain the

classical manifold MJ . On the Hilbert space H⊗H∗ the operators J−J′ generate an
action of SU(2) given by X 7→ U(g)XU(g)†, where X : H → H is any operator. Also,
the condition J−J′ = 0 specifies a subspace of operators for which U(g)XU(g)† = X ,
that is, operators that are invariant under rotations. But the only operator in Lj that
is invariant under rotations is the projection operator onto subspace Hj ,

Πj =
∑

m

|jm〉〈jm|, (113)

according to Schur’s lemma. This is the operator or vector in Lj ⊂ L ⊂ H⊗H∗ that
corresponds to the classical Lagrangian manifold MJ .

Now we turn to the projection of L onto T ∗SU(2) and of MJ ⊂ L onto
ΛJ ⊂ T ∗SU(2), and explain the corresponding linear algebra. The symplectic
manifold T ∗SU(2) is the cotangent bundle of SU(2), so it should be the phase space
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corresponding to L2(SU(2)), the Hilbert space of wave functions on SU(2). An
obvious basis on this Hilbert space is the set of components of the rotation matrices,
{Dj

mm′(g), ∀j,m,m′}, which are orthonormal with respect to the Haar measure on
the group. Actually, it is better to use the complex conjugates of these functions on

SU(2), Dj
mm′(g), which, when regarded as wave functions of a rigid body, have the

correct transformation properties under rotations (Littlejohn and Reinsch 1997). In
view of the quantum numbers, these wave functions are obviously the images of the
vectors |jm〉〈jm′| under the quantum analog of the classical projection map, and it
would appear that we have a map : L → L2(SU(2)).

Explicitly, this map is

X 7→ ψX(g) = tr[U(g)†X ], (114)

where X ∈ L. In particular, the basis vector |jm〉〈jm′| is mapped into

tr[U(g)†|jm〉〈jm′|] = 〈jm′|U(g)†|jm〉 = Dj
mm′(g), (115)

as expected. As for the projection operator Πj , its wave function on SU(2) is the
character,

Πj 7→ tr[U(g)†Πj ] =
∑

m

Dj
mm(g) = χj(g), (116)

where χj(g) actually depends only on the conjugacy class, and where we have used
the fact that for SU(2) the characters are real. Thus we see that the wave function
on SU(2) corresponding to the Lagrangian manifold ΛJ is the character χj(g).

The trace in (114) is the scalar product in H ⊗ H∗, so semiclassically its
stationary phase points should be the intersections of the Lagrangian manifolds in
Φ∗

2j corresponding to operators X and U(g). As for U(g), its Lagrangian manifold is

z = gz′, precisely the coordinate transformation we used in Sec. 5.3 on passing from L̇
to ˙T ∗SU(2). One way to see this is to note that the graph of a symplectic map : Φ → Φ
in Φ × Φ∗ = Φ∗

2j is a Lagrangian manifold in the latter space. In this case, z = gz′,
which is the obvious symplectic map corresponding to U(g), specifies a Lagrangian
manifold in Φ∗

2j that is the obvious candidate for the manifold supporting the operator
U(g). The fact that it is Lagrangian can be verified directly by computing the Poisson
brackets among the components of z − gz′ and z† − z′†g† in the symplectic structure
(47). These Poisson brackets all vanish. The Lagrangian manifold z − gz′ = 0 in Φ∗

2j

is actually a plane, which moreover is a subset of L.
Another point of view is the following. The operator U(g) belongs to the space

H⊗H∗. Let us call operators in this space “ordinary operators,” while linear operators
mapping this space into itself we will call “superoperators” (terminology without
relation to supersymmetry). Then an ordinary operator can be associated with a
superoperator by either left or right multiplication. For example, the ordinary operator
aµ, the usual annihilation operator, becomes a superoperator by either left or right
multiplication, X 7→ aµX or X 7→ Xaµ, where X is an ordinary operator. Then on
the phase space Φ∗

2j the superoperator, left multiplying by aµ, has Weyl symbol zµ,
while the superoperator, right multiplying by aµ, has Weyl symbol z′µ, in the (z, z′)
coordinates we have been using on Φ∗

2j . These operators satisfy the relation,

aµU(g) = U(g)
∑

ν

gµν aν , (117)
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which can be expressed by saying that U(g) is an eigenoperator of the commuting
superoperators whose symbols are the components of z−gz′ with eigenvalues 0. Thus
U(g) is supported semiclassically by the Lagrangian manifold z = gz′.

The Lagrangian manifold z = gz′ in Φ∗
2j is a subset of L and moreover consists

of orbits of I − I ′. Thus it survives the projection onto the quotient space, where in
fact it becomes simply g = const on T ∗SU(2). That is, it is the fiber over the point
g in the cotangent bundle. This fiber is naturally Lagrangian. So the intersections
of Lagrangian manifolds implied by (114) projects onto an intersection of Lagrangian
manifolds in T ∗SU(2), one being ΛJ and the other the fiber over g in T ∗SU(2). This
is the expected geometry for a wave function on SU(2).

Finally we note that the characters in SU(2) are given explicitly by

χj(φ) =
sin(j + 1/2)φ

sin(1/2)φ
, (118)

where we write g in axis-angle form, g = u(a, φ). By tracking the Lagrangianmanifolds
and the densities on them through the projection process we have just described it
can be shown that the denominator sin(1/2)φ can be interpreted as an amplitude
determinant in the semiclassical expression for the wave function. The amplitude
diverges at φ = 0 and φ = 2π, that is, at the group elements g = ±1, where as we
have noted the Lagrangian manifold has caustics when projected onto the base space
SU(2). The numerator sin(j + 1/2)φ is the sum of two branches of a WKB wave
function, corresponding to the two branches of ΛJ seen in Fig. 5 or in Fig. 7 below.

In the case of the character formula the semiclassical treatment is exact. This
can be seen as an example of the Duistermaat-Heckman theorem, which also connects
this discussion with mathematical work on the asymptotics of group structures. See
Duistermaat and Heckman (1982), Thompson and Blau (1997), Stone (1989) and Ben
Geloun and Gurau (2011).

6. The Second Reduction

We now carry out a second reduction, this one taking us from [ ˙T ∗SU(2)]6 or
[T ∗SU(2)]6 to a new quotient space we denote by Σ̇ or Σ. It will turn out that Σ is
essentially the symplectic manifold found in an ad hoc manner in Sec. 2 and illustrated
in Fig. 1. The symmetry group for this reduction is SU(2)6, and its momentum map
and the level set to be used are given by Jr + J′

r = 0, r = 1, . . . , 6.
Before we develop this further, however, there is one obvious problem, if we intend

to project the contour for the Ponzano-Regge phase, illustrated in Fig. 3, onto Σ̇. That
is, although the B-manifold is a subset of the level set Jr + J′

r = 0, r = 1, . . . , 6, as
required if it is to survive the projection onto Σ̇, the same does not apply to the A-
manifold. Therefore we do not seem to have a contour for the Ponzano-Regge phase
on Σ̇. We address this problem before studying the second reduction further.

6.1. A New Contour for the Ponzano-Regge Phase

Consider the contour P → Q → P ′ → P illustrated in Fig. 3. It was explained in
Sec. 3 that the integral of the symplectic 1-form θ around this contour is 2S, where
S is the Ponzano-Regge phase given by (7). In this section we interpret this contour

as belonging to either Φ12j or ˙T ∗SU(2) ⊂ T ∗SU(2) and θ as given by either (15) or
(91). However, it was also pointed out in Sec. 3 that the integrals of θ along the legs
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P → Q and Q → P ′ vanish, so in fact the closed contour P → Q → P ′ → P can be
restricted to just the open contour P ′ → P without changing the result. The latter
contour is an open contour contained in the intersection set T1.

P (λ0)

P (λ1) P ′(λ1)

P ′(λ0)

Figure 6. A reduced contour C for the Ponzano-Regge phase. The contour lies
entirely inside the set T̃ of tetrahedra.

Next, in Sec. 4 a family of such contours, parameterized by λ, was considered, as
illustrated in Fig. 4. These sweep out a 2-dimensional surface illustrated in the figure.
Applying Stokes’ theorem to the integral of ω = dθ over this surface (the “walls”),
we find that this integral is 2[S(λ1) − S(λ0)]. On the other hand, it was pointed out
in Sec. 4 that the integrals of ω over the first and second legs of the surface vanish,
as indicated by (36). Now applying Stokes’ theorem to the integral over the third leg
only, we obtain

2[S(λ1)− S(λ0)] =

∫

C

θ, (119)

where C is the closed contour P (λ0) → P ′(λ0) → P ′(λ1) → P (λ1) → P (λ0) which
may be seen in Fig. 4 and which is illustrated separately in Fig. 6. In fact, the integral
along the top and bottom edges of C give the result shown in (119), so the integrals
of θ along the vertical segments in Fig. 6 must cancel each other.

For our purposes the main point is that this new contour C lies entirely in the
space T̃ of tetrahedra. This is a subset of B̃, which survives the projection onto Σ̇, so
the contour C illustrated in Fig. 6 does also, and gives us an integral representation of
the Ponzano-Regge phase (actually the difference seen in (119)) on the quotient space
Σ̇.

Before leaving this contour we will specialize the initial conditions for future
convenience. The 2-dimensional surface illustrated in Fig. 4 is swept out by curves
P (λ) → Q(λ) → P ′(λ) → P (λ). All we require of the initial point P (λ) is that it
lie in the space T̃ of tetrahedra, that is, that the triangle and diangle conditions be
satisfied. Supposing this to be true, there still remains the question of the initial
phases of the spinors (zr, z

′
r). Let us now assume that at P (λ), z′r = ζr, where ζr is a

spinor such that (1/2)ζ†rσζr = J′
r. Let us also assume that at P (λ), zr = Θζr. This

implies (1/2)zrσzr = Jr = −J′
r, as required of the initial conditions.

Then the procedure of Sec. 3 shows that at point P ′(λ), we have z′r = ζr (the
same as at P (λ)), and zr = eiψrΘζr, where ψr = ψr(λ) is the dihedral angle of edge r
of the initial tetrahedron. Thus, one can say that the contour C illustrated in Fig. 6
has the dihedral angles built into it.

These choices are convenient, because they imply that at P (λ) (and therefore all
along the segment P (λ1) → P (λ0) in Fig. 6) we have gr = 1, r = 1, . . . , 6. As for
point P ′(λ), we have

gr = u(jr,−2ψr) = u(−jr, 2ψr), (120)
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because this SU(2) element, when applied to Θζr, brings out the phase eiψr . Here
jr = Jr/Jr.

6.2. Back to the Second Reduction

We now carry out the second reduction, in which the group is SU(2)6, generated by
Jr + J′

r, r = 1, . . . , 6. We work on the level set Jr + J′
r = 0, which is otherwise B̃.

For simplicity we work with the space [T ∗SU(2)]6 rather than [ ˙T ∗SU(2)]6. As before
the group action is a product of an action on each factor, in this case SU(2) acting
on T ∗SU(2); the latter action is given explicitly by (109). We drop the r index when
considering a single factor.

The zero level set in the 6-dimensional space T ∗SU(2) is Λ, defined by (111);
it is 4-dimensional. When considering the action of SU(2) on Λ it is convenient to
decompose Λ into the family of 3-dimensional submanifolds ΛJ , as indicated by (111),
since each ΛJ is invariant under the same action. See Fig. 5. To show this explicitly,
consider a point g = u(a, φ) 6= ±1 as in the figure, so that the action (109) implies

g = u(a, φ) 7→ u(n, α)u(a, φ)u(n, α)−1 = u(b, φ), (121)

where b = R(n, α)a. That is, the axis of the rotation transforms the same as J and J′,
so the conditions J = ±Ja, J′ = ∓Ja are maintained by the action (109). As for the
points g = ±1, the 2-spheres over these points (sets S+ and S− in the diagram) are
invariant under the action (109). It is also easy to see that ΛJ for J = 0 is invariant
under the action. Since all sets ΛJ are invariant under the action, so is Λ, and the
isotropy subgroup is the entire group SU(2).

As for the orbits of the action, consider first J > 0 and g 6= ±1. Then the action
(109) causes the point g to sweep out a conjugacy class in SU(2), which is a 2-sphere;
and the point on ΛJ over g on either (upper or lower) section sweeps out the portion
of the section over the conjugacy class. But since proper rotations cannot connect
J = Ja with J = −Ja, the orbits of the action (109) lie entirely on the upper or lower
sections, and the two branches are not connected by the action. Thus the orbits are
copies of the conjugacy class over which they lie, and are 2-spheres. Similarly, over
the points g = ±1 the orbits are 2-spheres, so all orbits for J > 0 are 2-spheres. As for
the set ΛJ for J = 0, the orbits are the conjugacy classes, which are 2-spheres except
at g = ±1 where they are single points.

To parameterize the conjugacy classes of SU(2) we write g = u(a, φ) so that φ
in the range 0 ≤ φ ≤ 2π is a coordinate of the conjugacy classes, with φ = 0 meaning
g = 1 and φ = 2π meaning g = −1. Then to construct the quotient space we take
first the case J > 0, for which ΛJ is 3-dimensional and all orbits are 2-spheres, so
that the quotient space is 1-dimensional. It consists of two branches over 0 < φ < 2π,
corresponding to J = ±Ja, which join together in a single branch over φ = 0 and
φ = 2π, as illustrated in Fig. 7. The quotient space ΛJ/SU(2) for J > 0 is a circle.
We introduce a coordinate τ on this circle by defining τ = φ on the upper branch
where J = Ja, and τ = −φ on the lower branch where J = −Ja. Then we can take τ
in the range −2π < τ ≤ 2π. This takes care of the case J > 0.

Forming the union of these circles for all J > 0, we obtain a cylinder with
coordinates (J, τ), 0 < J < ∞. This is the quotient manifold under the second

symplectic reduction applied to ˙T ∗SU(2). At J = 0 the set ΛJ is just SU(2) itself,
and the quotient space is the one-dimensional interval 0 ≤ φ ≤ 2π, the set of conjugacy
classes. Therefore we can pinch off the cylinder at J = 0 into this interval to form
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J = −Ja

φ

φ = 0 φ = 2π

J = +Ja

Figure 7. Illustration of the quotient space ΛJ/SU(2) for the case J > 0. The
space is a circle, which can be regarded as a two-branched object over the space
0 < φ < 2π of conjugacy classes, with the two branches joining at φ = 0 and
φ = 2π. The upper branch represents the part of the cotangent bundle T ∗SU(2)
over the conjugacy class for which J = +Ja and J′ = −Ja, while on the lower
branch J = −Ja and J′ = +Ja.

the entire quotient space. Alternatively, since the set J = 0 was a single point of the
level set in the first reduction and the set ΛJ for J = 0 is not a part of the image of
the first reduction, it is reasonable to take care of the case J = 0 in an ad hoc manner
by pinching off the cylinder at J = 0 into a point. The resulting set is topologically
R2, with polar coordinates (J, τ) with −2π < τ ≤ 2π. Recall also that the case J = 0
means a tetrahedron for which the dihedral angles are not defined, so it plays no role
in the Schläfli identity.

Extending this construction to all values of r = 1, . . . , 6, we can define the quotient
space Σ̇ as the sixth power of the cylinder with coordinates (J, τ) just described; and
similarly, we define Σ as the sixth power of the plane R2 with polar coordinates (J, τ).

6.3. The Symplectic Form on Σ or Σ̇

To compute the symplectic form on the (J, τ) cylinder we first restrict the form (90)
to the level set, upon which J = ±Ja. This gives

θ = iJ · tr(σ dg g†) = ±iJ tr[dg g†(a · σ)]. (122)

But g = cosφ/2− i(a · σ) sinφ/2, so
g†(a · σ) = (a · σ) cosφ/2 + i sinφ/2. (123)

Also,

dg =
1

2
[− sinφ/2− i(a · σ) cosφ/2]dφ− i(da · σ) sinφ/2. (124)

Now upon substituting (124) into (122) the term involving da vanishes, since a·da = 0
(a is a unit vector) and since trσ = 0. As for the term in dφ, it gives

θ = ±J dφ, (125)

after a bit of algebra, where the ± sign refers to the upper or lower branches. But
this can be expressed in terms of the coordinate τ on the circles, giving

θ = J dτ. (126)

This is the symplectic form on the cylinder, or the plane R2, if we extend it to J = 0
in the manner suggested above. It looks like the symplectic form for the harmonic
oscillator in action-angle variables, except that the angle τ has a range of 4π.
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Taking the sixth power of this, we obtain the symplectic 1-form on Σ or Σ̇, which
is

θ =
∑

r

Jr dτr . (127)

τ

J

P (λ0)P ′(λ0)

P (λ1)P ′(λ1)

Figure 8. When the contour illustrated in Fig. 6 is projected onto the quotient
space Σ̇, and then projected again onto one of the J-τ spaces for some r, it
becomes the contour illustrated here. On the upper segment J = J(λ1) and on
the lower J = J(λ0), while on the vertical segment at the left, τ = −2ψ(λ) and
J = J(λ).

6.4. The Contour and Lagrangian Manifold on Σ̇

Now let us project the contour illustrated in Fig. 6 onto the reduced space. The
contour contains a path P (λ1) → P (λ0), along which Jr and J′

r are functions of λ,
defining a family of tetrahedra for which (by our assumptions) V > 0; therefore, along
this path, Jr and ψr are functions of λ, with Jr > 0. Also, according to the conventions
introduced in Sec. 6.1, we have gr = 1 along this path, and hence τr = 0. Next, along
the path P (λ0) → P ′(λ0), Jr is constant while the group element gr has axis a = −jr
and an angle (or conjugacy class) φ that goes from 0 to 2ψr, as indicated by (120).
This means that J = −Ja, so we are on the lower branch of Fig. 7, and τr goes from
0 to −2ψr(λ0). The path P ′(λ1) → P (λ1) is similar; Jr is constant along this path,
and τr goes from −2ψr(λ1) to 0. Finally, along the path P (λ0) → P (λ1), Jr and τr
are functions of λ, with τr = −2ψr(λ). This projected contour lies in the space Σ̇ or
Σ; when it is projected onto one of the (J, τ) spaces for a fixed r, we obtain Fig. 8.

Finally, the manifold on Σ̇ given by τr = −2ψr, where the ψr are functions of
the six Jr’s, is a Lagrangian manifold, according to the logic of Sec. 2. In fact, Σ̇ is
essentially the symplectic manifold constructed in Sec. 2, apart from signs and factors
of 2. A surprising aspect of this result is that the dihedral angles of the tetrahedron
emerge in the end as labels of conjugacy classes in SU(2).

7. Conclusions

To conclude we will mention some aspects of this calculation that have not been
mentioned so far. First, it would be possible to carry out the two symplectic reductions
of this paper in a single step, that is, by taking the momentum map and level set to
be Jr+J′

r = 0, specifying the first and only reduction. This condition implies Ir = I ′r ,
so it includes the first reduction as carried out in this paper. We have proceeded in
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two steps because it is easier to see how the reductions work this way, and because
the intermediate stage, which involves T ∗SU(2), is interesting in its own right, with
potential applications in quantum gravity.

Another possibility is to reduce the original problem by Ir = I ′r = Jr, which means
a set of twelve copies of the Hopf fibration, resulting in a reduced phase space which
is (S2 × S2)6, in which the twelve angular momentum vectors Jr and J′

r , with fixed
magnitudes, are coordinates. In this case the Ponzano-Regge phase can be expressed
as a contour along 12-dimensional Lagrangian manifolds in this 24-dimensional space,
and the dihedral angles appear as solid angles of wedges on spheres. This phase space
can then be reduced again by Jtot, which produces a phase space that is closely related
to the shape spaces, S and Ṡ.

Thus far we have restricted attention to the Schläfli identity in Euclidean R3.
Schläfli’s original proof treated the case of the constantly curved three-sphere S3,
Schläfli (1858). In fact, similar identities hold in each of the three-dimensional
constant curvature spaces, including hyperbolic three-space H3, as well as in arbitrary
dimensions; the metrical proofs of Milnor (1994) and Alekseevskij, Vinberg and
Solodovnikov (1993) already mentioned treat the general case where the sectional
curvature κ is variable. If we parameterize this curvature with κ = −1, 0, 1 for H3, R3

and S3 respectively, then all three identities can be summarized in a single formula

2κdV =
∑

r

Jrdψr. (128)

We believe that the symplectic method of proof described in this paper can be
generalized to an arbitrary constant curvature three space. This is briefly outlined
in the following paragraphs and will be described more fully in a future publication.

Once again, we define a tetrahedron in each of the constant curvature spaces H3

and S3 through an ordered set of four vertices. We connect the vertices by geodesic
arcs and view these arcs as subsets of completely geodesic surfaces that make up the
faces of the tetrahedron. The curved space versions of the Schläfli identity apply to
these curved tetrahedra.

Just as a Euclidean tetrahedron emerges from the asymptotics of the ordinary
Wigner 6j-symbol, a tetrahedron in spaces of constant (positive or negative) curvature
emerges from the asymptotics of the q-deformed 6j-symbol, an invariant in the
representation theory of the quantum group or Hopf algebra su(2)q (Chari and Pressley
1994). This much is clear already from the work of Mizoguchi and Tada (1992) and of
Taylor and Woodward (2005), both of whom used one-dimensional WKB techniques
along the lines of Schulten and Gordon (1975ab).

These asymptotics are important in quantum gravity. A number of works have
drawn connections between the q-deformed symbols and discretizations of general
relativity that include a cosmological constant. In connection with loop quantum
gravity Han (2011) and Fairbairn and Meusberger (2011) have developed q-deformed
spin foam models and Dupuis and Girelli (2013), Bonzom et al (2014a), Bonzom et

al (2014b) and Dupuis et al (2014) have developed further connections between the
geometry of q-deformation and the cosmological constant.

A fully symplectic derivation of these asymptotics has yet to appear and this is
part of what we would like to achieve in our future work. We will now outline some
progress in this direction, speaking of the case of real q > 0, which corresponds to
tetrahedral geometry in the hyperbolic space H

3.
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The Hopf algebra su(2)q is generated by three operators, Jz and J±, satisfying
the commutation relations,

[Jz, J±] = ±~ J±,

[J+, J−] = ~
qJz/~ − q−Jz/~

q1/2 − q−1/2

(129)

where in comparison to the usual formulas we have inserted factors of ~, assuming
that Jz, J± have dimensions of angular momentum. This algebra can be realized in
terms of the raising and lowering operators of a q-deformed harmonic oscillator, in
a generalization of the Schwinger-Bargmann representation of SU(2), as shown by
Biedenharn (1989) and Macfarlane (1989). We follow Biedenharn’s convention for q
in (129). The q-deformed 6j-symbol is constructed out of irreducible representations
of this algebra, labeled by six values of the quantum number j, in a manner similar to
that used to construct the ordinary 6j-symbol out of six irreps of SU(2). In fact, the
q-deformed symbol approaches the ordinary one as q → 1, just as the Hopf algebra
(129) approaches the ordinary Lie algebra su(2) in the same limit.

To study the asymptotics of the representations of the algebra (129) we wish to
take the limit ~ → 0. This limit does not exist if q is held fixed, because of the
terms q±Jz/~. To obtain a well defined limit we follow Mizoguchi and Tada (1992)
and Taylor and Woodward (2005) by scaling q along with ~. We do this by requiring
that the ratio

J0 =
~

log q
(130)

be held fixed in the limit ~ → 0. With this understanding the limit ~ → 0 converts
the operator algebra (129) into the Poisson algebra

{Jz, Jx} = Jy, {Jz, Jy} = −Jx,
{Jx, Jy} = J0 sinh(Jz/J0),

(131)

where J± = Jx±iJy. In these Poisson bracket relations the operators (Jx, Jy, Jz) have
been “dequantized,” that is, they are no longer linear operators but rather functions
on the phase space Φ of the 2-dimensional q-deformed harmonic oscillator. We do
not give the definitions of these functions here but they are the dequantization of the
formulas given by Biedenharn (1989) and Macfarlane (1989) for the J-operators in
terms of the q-deformed raising and lowering operators. As for J0, it plays the role of
the curvature of the hyperbolic space H3. If we like we can set J0 = 1, corresponding
to the standard case κ = −1 in (128), or we can keep J0 which is useful for studying
the limit J0 → ∞ which is the nondeformed case q = 1.

The definitions of (Jx, Jy, Jz) provide a map from the phase space Φ to R3, in
which the J ’s are coordinates (this is a generalization of the Hopf map discussed
below (9)). The Poisson bracket relations (131) mean that this version of R3 is a
Poisson manifold. In the nondeformed case (q = 1), the resulting space is su(2)∗, the
dual of the Lie algebra of SU(2), otherwise “angular momentum space.” This is a
vector space, hence an Abelian group under addition. In the deformed case, the space
with (Jx, Jy, Jz) as coodinates is a non-Abelian group, isomorphic to the subgroup
of SL(2,C) consisting of upper triangular matrices with real diagonal elements. We
call this group B; the identification of angular momentum space with matrices in B
is specified by the matrix

b =

(

e−Jz/2 −J−
0 eJz/2

)

∈ B, (132)
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where we have set J0 = 1. Since these are elements of SL(2,C) they correspond to
Lorentz transformations and thus have an action on the unit mass shell in Minkowski
R

4, which otherwise is a realization of the hyperbolic space H
3. By this action

“angular momentum space” in the deformed case, previously identified with R3, is
seen to be diffeomorphic to H3, which is a more useful identification. The group
B ⊂ SL(2,C) plays a role in the Iwasawa decomposition of SL(2,C) (Helgason 1978),
in which an arbitrary element of SL(2,C) is factored uniquely into a product bu, where
b ∈ B and u ∈ SU(2). Elements b ∈ B can be used to identify cosets in the space
SL(2,C)/SU(2), which otherwise is the hyperbolic space H3. The group B ∼= H3 is by
(131) and (132) not only a group but a Poisson manifold. In this manner there appear
the elements of a Poisson-Lie group (Chari and Pressley 1994, Kosman-Schwarzbach
2004).

The comultiplication rule of the Hopf algebra (129) can be written in physicist’s
language as

Jz = J1z + J2z,

J± = q−J1z/2 J2± + J1± e
J2z/2,

(133)

where we have set ~ = 1. This is a generalization of the addition of angular
momenta, J = J1 + J2, in the nondeformed case. The significance of (133) is that if
(J1z , J1±) and (J2z, J2±) satisfy the Hopf algebra (129), then so do (Jz , J±), so that
products of representations of the Hopf algebra are also representations. When (133)
is dequantized, we obtain

Jz = J1z + J2z,

J± = e−J1z/2 J2± + J1± e
J2z/2

(134)

where we have set J0 = 1. This version of the comultiplication rule has the property
that if J1 and J2 satisfy the Poisson algebra (131), then so does J. It also has the
property that if J1 and J2 correspond to group elements b1, b2 ∈ B, according to (132),
then J corresponds to group element b = b1b2. In other words, the comultiplication
rule (134) is the multiplication law for the group B in coordinates J on B.

In particular, if J = 0 in (134), then b1b2 = 1, or b2 = b−1
1 . By letting elements

of B act on the origin in H3 those elements can be used to label points of H3, and a
relation such as b1b2 = 1 can be interpreted geometrically as the tracing and retracing
a geodesic line segment in H3. That is, it becomes a q-deformed version of a diangle
condition. (Our notation here is slightly different from that used in Sec. 3.2 for the
diangle condition: J1 and J2 here correspond to J and J′ there.) The length of the
line segment can be interpreted as the value of the q-deformed version of the Casimir
function, the generalization of the function I in (9), for either J1 or J2. Combining
the diangle condition J = 0 with the Casimir conditions gives the specification of a
Lagrangian manifold in the q-deformed version of the phase space Φ2j = Φ× Φ, and
taking the six-fold product of this gives us the q-deformed version of the B-manifold,
a Lagrangian submanifold of Φ12j .

Comultiplication is associative but not commutative. Taking the coproduct of
three copies of the Poisson algebra (131) gives

Jz = J1z + J2z + J3z ,

J± = e−(J1z+J2z)/2 J3± + e−J1z/2 J2± e
J3z/2 + J1± e

(J2z+J3z)/2.
(135)

Now the condition J = 0 corresponds to b1b2b3 = 1 when J1, J2 and J3 are mapped
into group elements by (132), and this in turn can be interpreted geometrically as a
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triangle condition in H3. When the values of the three Casimirs (that is, the lengths
of the edges of the triangle) are fixed, we obtain a Lagrangian manifold in the product
space Φ× Φ× Φ. And when four triangle conditions are combined in Φ12j we obtain
the q-deformed version of the A-manifold, a Lagrangian submanifold of Φ12j .

Thus we obtain the basic geometrical picture for the asymptotics of the q-
deformed 6j-symbol. The A- and B- manifolds have intersections which correspond
geometrically to a tetrahedron in H3, and the phase of the asymptotic expression is
the integral of the symplectic form from one component of the intersection, along the
B-manifold to the other component, and then back along the A-manifold to the first
component, with a final motion along the intersection to the initial point. The details
are more complicated than in the nondeformed case mainly because the group B is
non-Abelian, but they follow the outline presented in this paper for the nondeformed
case. We will report on this calculation and its relation to the Schläfli identity more
fully in future publications.
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