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Abstract
We present the asymptotic formula for the Wigner 9j -symbol, valid when
all quantum numbers are large, in the classically allowed region. As in
the Ponzano–Regge formula for the 6j -symbol, the action is expressed in
terms of lengths of edges and dihedral angles of a geometrical figure, but
the angles require care in definition. Rules are presented for converting spin
networks into the associated geometrical figures. The amplitude is expressed
as the determinant of a 2 × 2 matrix of Poisson brackets. The 9j -symbol
possesses caustics associated with the fold and elliptic and hyperbolic umbilic
catastrophes. The asymptotic formula obeys the exact symmetries of the
9j -symbol.

PACS numbers: 03.65.Sq, 04.60.Pp, 02.20.Qs, 02.30.Ik

1. Introduction

The asymptotic behavior of spin networks has played a significant role in simplicial approaches
to quantum gravity. Indeed, the field began with the observation that the Ponzano–Regge
action (1968) for the semiclassical 6j -symbol is identical to the Einstein–Hilbert action of
a tetrahedron in three-dimensional gravity in the Regge formulation (Regge (1961); see also
Williams and Tuckey (1992) and Regge and Williams (2000)). More recently, semiclassical
expansions have been used to study the low energy or classical limit of quantum gravity
as well as to derive quantum corrections to the classical theory. Asymptotic studies in this
area have included treatments of the 10j -symbol (Barrett and Williams 1999, Baez et al
2002, Barrett and Steele 2003, Freidel and Louapre 2003), amplitudes in the Freidel–Krasnov
model (Conrady and Freidel 2008), LQG fusion coefficients (Alesci et al 2008) and the EPRL
amplitude (Barrett et al 2009). In addition, the venerable 6j -symbol and Ponzano–Regge
(1968) formula continue to receive attention (Roberts 1999, Barrett and Steele 2003, Freidel
and Louapre 2003, Gurau 2008, Charles 2008, Littlejohn and Yu 2009, Dupuis and Livine
2009, Ragni et al 2010), not to mention the q-deformed 6j -symbol (Nomura 1989; Taylor and
Woodward 2004, 2005).
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In this paper we present the generalization of the Ponzano–Regge formula to the Wigner
9j -symbol, as well as some material relevant for the asymptotics of arbitrary spin networks.
The Ponzano–Regge formula (Ponzano and Regge 1968) gives the asymptotic expression for
the Wigner 6j -symbol when all quantum numbers are large. The 9j -symbol is the next most
complicated spin network after the 6j -symbol, with features that are found in all higher spin
networks. In this paper we present only the asymptotic formula itself for the 9j -symbol and
some salient facts surrounding it. We defer a derivation and deeper discussion of the formula
to a subsequent publication.

Our derivation has quite a few steps, and some of them at this point are supported by
numerical evidence only. Thus, we do not now have a rigorous derivation of our result. We
believe it is correct, however, on the basis of direct numerical comparisons with the exact
9j -symbol, the fact that our formula obeys all the symmetries of the exact 9j -symbol, and the
plausibility and numerical support for the conjectures involved in the parts of the derivation
currently lacking proofs. The proofs do not seem difficult, and we hope to fill in the gaps in
our future work.

Although most of the papers cited above have dealt with the asymptotics of specific spin
networks, usually there are special values of the angular momenta that are used. For example,
the 10j -symbol involves balanced representations of SO(4), which means that some pairs of
j ’s are equal, while the 9j -symbols that appear in LQG fusion coefficients have two columns
in which one quantum number is the sum of the other two. In addition, j ’s are sometimes set
equal because this is regarded as the most interesting regime from a physical standpoint.

As a result, the spin networks that have been studied tend to fall on caustics where
the asymptotic behavior is not generic. At such points, the value of the spin network (the
wavefunction) is not oscillatory in a simple sense, instead it has the form of a diffraction
catastrophe (Berry 1976). In addition, the wavefunction scales as a higher (less negative)
power of the scaling parameter (effectively, 1/h̄). This type of behavior has been noted in
several places in the quantum gravity literature, although as far as we can tell no one has
noted that it is related to standard caustic and catastrophe types. In this paper we give a
rather complete picture of the 9j -symbol for all possible parameters in the classically allowed
region, including all phases and Maslov indices. We also indicate the subsets upon which the
behavior is nongeneric and described by various types of caustics. We believe that this is the
first time that such information has been available for any spin network more complicated than
the 6j -symbol.

Another reason for interest in the 9j -symbol is that it is the nontrivial part of the Clebsch–
Gordan coefficient for SO(4).

Basic references on the Wigner 9j -symbol include Edmonds (1960), Biedenharn and
Louck (1981a, 1981b) and Varshalovich et al (1981). Recent work on the 9j -symbol has
included new asymptotic forms when some quantum numbers are large and others small
(Anderson et al 2008, 2009). We also note the use of SU(2) spin networks in quantum
computing (Marzuoli and Rasetti 2005).

In section 2 we present the asymptotic formula for the 9j -symbol and draw comparisons
with the Ponzano–Regge formula to introduce its geometrical content. A detailed explanation
of the notation follows in later sections. In section 3 we present general rules for converting
spin networks into surfaces composed of oriented edges and oriented triangles, and illustrate
them for the 9j -symbol. In section 4 we explain how the geometrical objects (pieces of
oriented surfaces) corresponding to the 9j -symbol can be constructed in three-dimensional
space. In section 5 we explain the configuration space of the 9j -symbol and the classically
allowed subset thereof. In section 6 we define the amplitude of the asymptotic formula
and discuss the manifolds (the caustics) upon which it diverges as well as the diffraction
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catastrophes that replace the simple asymptotic form in the neighborhood of the caustics. In
section 7 we explain the phase of the semiclassical approximation, a generalization of the
Ponzano–Regge action that requires careful definitions of dihedral angles. In section 8 we
show that the asymptotic formula correctly obeys the symmetries of the 9j -symbol. Finally,
in section 9 we present some comments and conclusions.

2. The asymptotic formula

The asymptotic expression for the 9j -symbol is⎧⎨
⎩

j1 j2 j3

j4 j5 j6

j7 j8 j9

⎫⎬
⎭ = A1 cos S1 + A2 sin S2, (1)

where A1,2 are positive amplitudes, S1,2 are phases and each term is roughly similar to the
single term in the Ponzano–Regge formula for the 6j -symbol. The right-hand side is the
leading term in an asymptotic expansion in powers of 1/k of the 9j -symbol when all nine j ’s
are scaled by a positive factor k that is allowed to go to infinity (k plays the role of 1/h̄ in the
asymptotic expansion). The k’s are suppressed in (1), but the expression on the right-hand
side scales as 1/k3. Equation (1) applies only in the classically allowed region. We do not
present the analog of (1) in the classically forbidden region.

Equation (1) breaks down near caustics, where the 9j -symbol scales with a higher
(less negative) power of k than 1/k3. In the neighborhood of caustics, the 9j -symbol
is approximated by diffraction catastrophes, including the fold and hyperbolic and elliptic
umbilic. These are discussed more fully in section 6.

To explain the meaning of (1) some analogies with the Ponzano–Regge formula for the
6j -symbol are useful. In the classically allowed region, the Ponzano–Regge approximation is{

j1 j2 j3

j4 j5 j6

}
= 1√

2π |V123|
cos

(
S +

π

4

)
, (2)

where the phase and amplitude are expressed in terms of the geometry of a tetrahedron whose
six edge lengths are Ji = ji + 1/2. We let Ji , i = 1, . . . , 6, be classical vectors that run
along the edges of the tetrahedron, such that J3 + J4 + J5 = 0, J1 + J6 + J5, J3 = J1 + J2 and
J6 = J2 + J4. The amplitude is defined by V123 = J1 · (J2 × J3), which is six times the volume
of the tetrahedron, and the phase is defined by

S =
6∑

i=1

Jiθi, (3)

where θi is the exterior dihedral angle at edge i, that is, cos θi is the dot product of the outward
pointing normals of the two faces adjacent at edge i, such that 0 � θi � π .

More precisely, there are two tetrahedra associated with a 6j -symbol, related by spatial
inversion, that is, time-reversal. Except for flat configurations, the two tetrahedra are not
related by proper rotations in SO(3). We recall that time-reversal, not parity, inverts the
direction of angular momentum vectors. The two tetrahedra correspond to the two stationary
phase points of the 6j -symbol, which make contributions to the asymptotic expression that
are complex conjugates of each other. The result is the real cosine term in (2). One can say
that semiclassically the 6j -symbol is a superposition of two amplitudes, corresponding to a
tetrahedral geometry and its time-reversed image, that produce oscillations in the result.

We shall use lower case j ’s for quantum numbers, and capital J’s for the lengths of the
corresponding classical vectors. These are always related by Ji = ji + 1/2. The 1/2 is a
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Figure 1. The spin network for the 9j -symbol.

Maslov index (Maslov and Fedoriuk 1981, Mishchenko et al 1990, de Gosson 1997), and the
manner in which it arises in this context is explained in Aquilanti et al (2007).

In the case of the 9j -symbol in the classically allowed region, there are four geometrical
figures associated with a given set of nine j ’s, consisting of two pairs related by time-reversal.
The four geometrical figures correspond to the four real stationary phase points of the 9j -
symbol. Each pair of figures is associated with an ‘admissible’ root (defined momentarily) of
a certain quartic equation. There are two admissible roots in the classically allowed region,
labeled 1 and 2, corresponding to the two terms in (1). Each trigonometric term in (1) consists
of an exponential and its complex conjugate, corresponding to a geometrical figure and its
time-reversed image. One can say that semiclassically the 9j -symbol is a superposition of
four amplitudes corresponding to four geometries, consisting of two pairs of a geometry and
its time-reversed image. We now explain these geometries and how they are specified by the
nine j ’s that appear in the symbol.

3. Triangles, orientations and geometries

The 9j -symbol specifies the lengths Ji = ji +1/2 of nine classical angular momentum vectors
Ji but not their directions. Therefore, we inquire as to how the directions may be determined,
and geometrical figures constructed out of the resulting vectors.

Actually, it is convenient to double this set and speak of 18 classical vectors Ji , J′
i ,

i = 1, . . . , 9. A doubling of this kind was introduced by Roberts (1999), who gave a highly
symmetrical way of writing the 6j -symbol as a scalar product in a certain Hilbert space.
Although Roberts only worked with the 6j -symbol, his method is easily generalized to an
arbitrary spin network. Ponzano and Regge (1968) also gave hints that doubling of angular
momentum vectors is important in the asymptotic analysis of spin networks.

We now describe rules that take an arbitrary spin network (with at most trivalent vertices)
and transcribe it into relations among a doubled set of classical angular momentum vectors,
defining a set of oriented triangles and oriented edges of a geometrical figure. We exemplify
these rules only in the case of the 9j -symbol, but they are easily applied to any spin network.
The reader may find it illuminating to apply our rules to the 6j -symbol, starting with the usual
spin network (the Mercedes graph). Figure 1 illustrates the spin network of the 9j -symbol.
See also figure 18.1 of Yutsis et al (1962).
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Each edge of the spin network, labeled by ji, is associated with two classical angular
momentum vectors Ji and J′

i that are required to satisfy

|Ji | = |J′
i | = Ji = ji + 1/2 (4)

and

Ji + J′
i = 0. (5)

Vectors Ji and J′
i have the same length and point in opposite directions.

Each vertex of the spin network, where three edges meet, corresponds to three vectors
that add to zero. The three vectors are associated with the three edges. If the arrow on an edge
ending at the vertex is pointing away from the vertex, then the angular momentum vector is
unprimed; if it is pointing toward the vertex, then the vector is primed. This rule applied to
figure 1 gives

J1 + J2 + J3 = 0, J′
1 + J′

4 + J′
7 = 0,

J4 + J5 + J6 = 0, J′
2 + J′

5 + J′
8 = 0,

J7 + J8 + J9 = 0, J′
3 + J′

6 + J′
9 = 0.

(6)

These are a set of classical triangle relations, one for each vertex of the spin network. In the
case of the 9j -symbol, they are obviously related to the rows and columns of the symbol.

Although the vector addition in (6) is commutative, we agree to write the vectors in
each equation in counterclockwise order (around the vertex of the spin network) for a vertex
with + orientation, and in clockwise order for a vertex with − orientation, modulo cyclic
permutations. Thus, the ordering of the vectors is the same as the ordering of the columns of
the 3j -symbol implied by the vertex of the network.

This ordering is used to define a set of oriented triangles. We take the three vectors of any
one of equations (6) and place the base of one vector at the tip of the preceding one, to create
the three edges of a triangle. In this process we parallel translate the vectors (in R

3) but do
not rotate them. The triangle is given an orientation (a definition of a normal) by taking the
cross product of any two successive vectors defining the edges. For example, the normal to
the 123-triangle is J1 × J2, and that of the 1′4′7′-triangle is J′

1 × J′
4, which, in view of (5), is

the same as J1 × J4.
Next, we take the triangles and displace them so that the edge Ji of one triangle is adjacent

to the edge J′
i of another triangle. In this process, the triangles are displaced but not rotated.

If we do this with the six triangles defined by (6) in the case of the 9j -symbol, we find that
six pairs of edges can be made adjacent, as illustrated by the central six triangles of figure 2.
In this ‘central region’ six pairs of vectors Ji and J′

i are adjacent for i = 1, 2, 5, 6, 7, 9. There
is some arbitrariness in choosing which six pairs of edges will be made adjacent. If we wish
that the remaining edges i = 3, 4, 8 also be paired, we can duplicate three of the triangles and
attach them to the periphery of the central region, as illustrated in figure 2. This amounts to a
kind of ‘analytic continuation’ of the central region.

Figure 2 is highly schematic. In general, the triangles are not equilateral, the surface
that is formed by attaching them together is not planar, and the triangles may fold under one
another.

The central region in figure 2 is a piece of an oriented surface, that is, all the normal
vectors (by our convention) are pointing on the same side. In the case of the 6j -symbol,
our rules produce a closed surface (the usual tetrahedron), with normals all pointing either
outward or inward (time-reversal converts one into the other). In the case of the 9j -symbol,
the surface is not closed. There is some suggestion that this surface represents a triangulation
of RP 2 but for this paper we shall view it as living in R

3.
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Figure 2. The six triangles defined by (6) form the ‘central region’ of the figure, with three
triangles duplicated and attached to the edges of the central region. The notation 1, 2′, etc refers
to J1, J′

2, etc.
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Figure 3. The central region of the time-reversed surface. Notation −1, −2′, etc refers to −J1,
−J′

2, etc.

Finally, we orient each edge by choosing the direction of the vector Ji (not J′
i).

We will be interested in finding solutions {Ji , J′
i , i = 1, . . . , 9} of (4)–(6), modulo overall

proper rotations (in SO(3)). That is, although we do not rotate vectors or faces when forming
our surface with oriented faces and edges, we are allowed to rotate the whole surface once
completed.

We note that if {Ji , J′
i , i = 1, . . . , 9} is a solution of these equations, then the time-reversed

set {−Ji ,−J′
i , i = 1, . . . , 9} is also a solution. If we apply our rules for converting vectors

into a surface, we will find in general that the time-reversed set produces a different surface
(not equivalent under SO(3)). We apply time-reversal only to the vectors, not the rules; for
example, the ordering of the time-reversed vectors is the same as the original vectors. The
central six triangles of the time-reversed surface are illustrated in figure 3.
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To visualize the surfaces in figures 2 and 3, we may imagine that the central region of
figure 2 bulges out of the paper, like the northern hemisphere of a sphere (whether it does or
not depends on the parameters, but this is one possibility). Then the time-reversed surface in
figure 3 bulges into the paper, since spatial inversion is equivalent, modulo SO(3), to reflection
in a plane. Then the central region of figure 2 can be glued to the time-reversed surface in
figure 3, bringing edge J′

3 adjacent to edge −J3, etc, and producing a surface homeomorphic
to S2. This is the hexagonal bipyramid constructed by Ponzano and Regge (1968). The
conventional normals are pointing outward in the northern hemisphere, and inward on the
southern. As noted by Ponzano and Regge, this bipyramid is bisected by three planes
passing through a common line, namely the ‘axis’ of the sphere, which cut the bipyramid
into three pairs of congruent tetrahedra. These correspond to the three 6j -symbols in the
representation of the 9j -symbol as a sum over products of 6j -symbols (see Edmonds (1960)
equation (6.4.3)), in which the variable of summation is the common edge of the tetrahedra
(the axis of the sphere).

4. Finding the vectors

To find a solution of (4)–(6) we note that all 18 vectors are determined if only four of them,
{J1, J2, J4, J5}, are given. We let G be the 4 × 4 Gram matrix constructed out of these vectors,
that is, the 4 × 4, real symmetric matrix of dot products of these vectors among themselves.
Of the ten independent dot products, eight can be determined from the given lengths Ji,
i = 1, . . . , 9. That is, the diagonal elements are J 2

i , i = 1, 2, 4, 5, while

J1 · J2 = (
J 2

3 − J 2
1 − J 2

2

)/
2, J1 · J4 = (

J 2
7 − J 2

1 − J 2
4

)/
2,

J2 · J5 = (
J 2

8 − J 2
2 − J 2

5

)/
2, J4 · J5 = (

J 2
6 − J 2

4 − J 2
5

)/
2.

(7)

The two dot products that cannot be determined from the given lengths are u = J1 · J5 and
v = J2 ·J4, which we regard as unknowns. These satisfy a linear equation obtained by squaring
J9 = −J3 − J6:

J 2
9 = J 2

3 + J 2
6 + 2(u + v + J1 · J4 + J2 · J5). (8)

Another equation connecting u and v is det G = 0, which holds since the four vectors lie in
R

3 and the 4-simplex defined by them is flat. This is a quartic equation in u and v, which
by using (8) to eliminate v can be converted into a quartic equation in u alone. We write this
quartic as Q(u) = 0. We find the roots u of this quartic, solve for v by using (8), whereupon
all components of the Gram matrix become known (there is one Gram matrix for each root).

Ponzano and Regge (1968) discussed this procedure in somewhat different language, and
apparently believed that all four roots would contribute to the asymptotics of the 9j -symbol.
In fact, they do, if one wishes to work in the classically forbidden region and/or take into
account tunneling and exponentially small corrections in the neighborhood of internal caustic
points (more about these below). But in the classically allowed region the asymptotics of the
9j -symbol are dominated by the contributions from ‘admissible’ roots, namely, those roots
that produce Gram matrices that can be realized as dot products of real vectors Ji . Only these
correspond to real geometrical figures of the type we have described.

If a root u of Q(u) = 0 is complex, then it produces a complex Gram matrix that cannot
be realized with real vectors, and so u is inadmissible. But a real Gram matrix can be realized
as the dot products of real vectors if and only if it is positive semidefinite; so even if u is real
it will still be inadmissible if G has negative eigenvalues.

We define the classically allowed region of the 9j -symbol as the region in which Q(u)

has at least one admissible root. In fact, in the classically allowed region Q(u) has four real

7
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roots of which two are generically admissible. We order the four real roots of Q(u) in the
classically allowed region in ascending order and label them by k = 0, 1, 2, 3. It turns out
that the two admissible roots are the middle two, k = 1, 2, corresponding to the two terms
of (1) with the same subscripts, k = 1, 2.

For a given admissible root, that is, a positive semidefinite Gram matrix, we wish to find
the vectors Ji , i = 1, 2, 4, 5. We arrange the four unknown vectors as the columns of a 3 × 4
matrix F, so that G = FT F . To find F given G, we diagonalize G, G = V KV T , where
V ∈ O(4) and K is diagonal with nonnegative diagonal entries (the eigenvalues of G). At least
one of these eigenvalues must be 0; we place it last, and write K = DT D, where D is a real,
3 × 4 diagonal matrix. Then F = UDV T , where U is an arbitrary element of O(3). This
generates all possible sets of vectors whose dot products are realized in G; it amounts to using
the singular value decomposition of F. If U = R ∈ SO(3) then we generate a set of surfaces
related by overall rotations; if U = −R we generate the time-reversed set. In this way a single
Gram matrix, corresponding to a single admissible root of the quartic, produces a geometry
and its time-reversed image. Altogether, the two admissible roots imply the four geometries
in (1).

This method of finding F is discussed in the context of the 6j -symbol by Littlejohn and
Yu (2009), where it is also applied in the classically forbidden region. There we find complex
angular momentum vectors that satisfy the required algebraic relations. This carries over to the
9j -symbol in the classically forbidden region. In the literature on the 6j -symbol it is common
to state that a Euclidean group applies in the classically allowed region and a Lorentz group in
the classically forbidden region; but for the 9j -symbol the groups are actually SO(3, R) and
SO(3, C).

5. The classically allowed region and configuration space

The classically allowed region is a subset of full dimensionality of the nine-dimensional
parameter space of the 9j -symbol, itself a convex subset of R

9 defined by the triangle
inequalities. To visualize this and other subsets of the parameter space it helps to fix seven of
the j ’s to obtain a two-dimensional slice. Figure 4 illustrates such a slice for the case⎧⎨

⎩
129/2 137/2 j3

113/2 121/2 j6

64 108 90

⎫⎬
⎭ , (9)

in which only j 3 and j 6 are allowed to vary. The choice of j 3 and j 6 for this purpose is not
arbitrary, since these two j ’s are quantum numbers for a pair of commuting operators on a
space of 5-valent SU(2) intertwiners. They are like x and y for a wavefunction ψ(x, y). In
this analogy, we think of (j3, j6)-space as a ‘configuration space’ for the 9j -symbol and the
9j -symbol itself as a ‘wavefunction’ ψ(j3, j6). We will mostly use the variables J3 = j3 +1/2,
J6 = j6 +1/2 to describe this space. When thinking in classical terms, J3 and J6 are continuous
variables (not quantized).

Figure 4 illustrates a convex region of the J3–J6 plane, bounded by straight lines and
defined by the classical triangle inequalities:

max(|J1 − J2|, |J6 − J9|) � J3 � min(J1 + J2, J6 + J9),

max(|J4 − J5|, |J3 − J9|) � J6 � min(J4 + J5, J3 + J9).
(10)

Properly speaking, configuration space is this convex region, not the whole plane. The
unshaded area inside the convex region is the classically allowed region, surrounded by the
shaded classically forbidden region. The caustic curve separates the classically allowed from

8
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Figure 4. The convex region of the J3–J6 plane is the configuration space of the 9j -symbol. The
shaded area is the classically forbidden region, and the unshaded, the classically allowed. Points I
are internal caustics, two of the flat configurations; points B are the other two flat configurations,
lying on the boundary curve.

the classically forbidden regions; it has kinks (discontinuities in slope) at points B, and is
tangent to the boundary of the convex region at several points. Other features of this figure
are explained below.

Given a point (J3, J6) of the classically allowed region, the procedure described in
sections 3 and 4 produces a quartic polynomial Q(u) whose two middle roots k = 1, 2 are
admissible. These can be thought of as specifying a two-branched ‘root surface’ that sits over
the classically allowed region. The two middle roots coalesce as we approach the caustic
curve, and become (inadmissible) complex conjugates as we move beyond. Thus, the two root
surfaces can be thought of as being glued together on the caustic curve.

Corresponding to each root there are two geometries modulo SO(3), related by time-
reversal, so there is a two-fold ‘geometry surface’ sitting above each root surface, or four
geometry surfaces sitting above the classically allowed region. These four geometry surfaces
are actually branches of the projection of an invariant 2-torus onto configuration space, and
correspond to the four exponential terms in (1). This 2-torus sits in the phase space of the
9j -symbol, a four-dimensional, compact symplectic manifold.

This symplectic manifold is only one of several phase spaces that describe the classical
mechanics of the 9j -symbol, but all the others have higher dimensionality so we call this one
the ‘phase space of minimum dimensionality.’ It is one of the symplectic manifolds discovered
by Kapovich and Millson (1996). Its analog in the case of the 6j -symbol is a spherical phase
space, which has been studied by Charles (2008) and by Littlejohn and Yu (2009). The
phase space of minimum dimensionality is related to other phase spaces for the 9j -symbol
by a combination of symplectic reduction (Marsden and Ratiu 1999) and the elimination of
constraints. We have found it useful to employ all these spaces in our work on the 9j -symbol.

6. The amplitude and caustics

The amplitudes of semiclassical approximations are notorious for the computational difficulties
they cause. For example, several authors have resorted to computer algebra and/or numerical

9



Class. Quantum Grav. 27 (2010) 135010 H M Haggard and R G Littlejohn

experimentation to check the amplitude determinant in the Ponzano–Regge formula. Actually,
this amplitude (due originally to Wigner (1959)) is given by a single Poisson bracket between
intermediate angular momenta (Aquilanti et al 2007, and, in more detail, Littlejohn and Yu
2009), which can be evaluated in a single line of algebra. More generally, semiclassical
amplitudes are easily found in terms of matrices of Poisson brackets.

In the case of the 9j -symbol we define

Vijk = Ji · (Jj × Jk), (11)

which is six times the signed volume of the tetrahedron specified by edges i, j , k (it is the
volume of the corresponding parallelepiped). Then the amplitudes A1, A2 in (1) are given by

A = 1

4π
√| det D| , (12)

where

D =
(

V124 V215

V451 V542

)
. (13)

The subscripts 1,2 are omitted on A in (12) because the same formula applies for both terms
in (1), but A1 �= A2 in general because the formula is evaluated on two different geometries
(associated with the two admissible roots). The quantity det D is even under time-reversal, so
the same amplitude applies to both a geometry and its time-reversed image.

The volumes in matrix D are Poisson brackets of intermediate angular momenta in a
recoupling scheme for the 9j -symbol, which are most easily evaluated in the phase space of
minimum dimensionality. We omit details; suffice it to say for now that the derivation of
matrix (13) in terms of Poisson brackets and thence the amplitude is extremely easy.

We define the caustic set as the subset of the 9j -parameter space where det D = 0. Its
intersection with the two-dimensional slice seen in figure 4 consists of the union of the caustic
curve (the curve separating the classically allowed from the classically forbidden region) with
the two points marked I. In addition, the caustic set includes the continuation of the caustic
curves from points B into the classically forbidden region. The points I are ‘internal’ caustics,
that is, internal to the classically allowed region. While the caustic curve has codimension 1,
the internal caustics have codimension 2.

The quantity det D is nonzero away from the caustics. It turns out that the sign of det D
distinguishes the two root surfaces, with det D > 0 on root surface 1 and det D < 0 on root
surface 2.

The caustics of the 6j -symbol occur at the flat configurations (flat tetrahedra), as
appreciated by Ponzano and Regge (1968) and Schulten and Gordon (1975a, 1975b). The
caustics of the 9j -symbol, however, are not in general flat, that is, det D = 0 does not imply
that the configuration is flat. The flat configurations of the 9j -symbol, however, do lie on
the caustic set. In a given J3–J6 slice, there are precisely four flat configurations. In the
example of figure 4, these are marked B and I. The points B are flat configurations lying on
the boundary of the classically allowed region (the caustic curve), while points I are internal
flat configurations. As we vary the seven j ’s that are fixed in figure 4, the number of flat
configurations on the boundary varies from 2 to 4; those not on the boundary are internal.

In the usual manner of semiclassical approximations, (1) breaks down in a neighborhood of
the caustic set (it diverges exactly at the caustic), and must be replaced by a diffraction function
associated with a catastrophe (Berry 1976). In the case of the 6j -symbol, the only catastrophe
that occurs is the fold, yielding an Airy function as the semiclassical approximation, as noted
by Ponzano and Regge (1968) and Schulten and Gordon (1975). This is the normal situation
for systems of one degree of freedom. The 9j -symbol, however, possesses two degrees of
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freedom, and other types of catastrophes occur. The fold catastrophe applies at most points
along the caustic curve, where the 9j -symbol is approximated by an Airy function; but at flat
configurations there is an umbilic catastrophe, hyperbolic for those (B) falling on the boundary
(caustic) curve and elliptic for the internal caustics (I). See Trinkhaus and Drepper (1977) for
illustrations of the associated diffraction functions. The umbilic catastrophes are generic in
systems of three degrees of freedom but occur in the 9j -symbol (with only two) because of
time-reversal symmetry. However, only sections of the full three-dimensional umbilic wave
forms appear (Berry 1976). The cusp catastrophe, which can be expected in generic systems
of two degrees of freedom, does not occur in the classically allowed region of the 9j -symbol.

Caustics are associated with the coalescence of branches of the projection of a Lagrangian
manifold in phase space onto configuration space. In the case of the 9j -symbol, the Lagrangian
manifold is the invariant 2-torus mentioned in section 5. Along the boundary of the classically
allowed region, the two admissible roots coalesce, which means that the four geometries merge
into two. At most points on the boundary curve, the two remaining geometries are not equal,
but are related by time-reversal. At such points we have a fold catastrophe, and the 9j -symbol
is approximated by an Airy function (modulated by a cosine term). At points B, however, the
two geometries related by time-reversal merge into a single flat configuration, producing the
hyperbolic umbilic catastrophe.

At internal caustic points I the geometry and its time-reversed image for one of the two
admissible roots coalesce to produce a flat configuration. The two geometries of the other root
surface, however, do not coalesce. Thus, at internal caustics I there are three geometries. Only
the flat configuration associated with one of the roots produces the elliptic umbilic catastrophe;
thus, only one of the two terms in (1) is replaced by the elliptic umbilic diffraction function,
while the other remains as shown in (1). The 9j -symbol is a linear combination of these two
terms, but the elliptic umbilic diffraction function dominates when the scaling factor k is large.

The caustics have a certain size, that is, a distance around the caustic set over which
diffraction functions must be used instead of (1). This distance �j scales as k1/3 for all three
catastrophe types (fold and elliptic and hyperbolic umbilic) discussed here.

In the neighborhood of fold catastrophes the wavefunction scales as k−17/6, that is, k1/6

higher than the k−3 of the two terms in (1). In the neighborhood of umbilic catastrophes the
scaling is k−8/3, that is, with another factor of k1/6. For large values of k the 9j -symbol is
largest near the points I, B.

Linear combinations with different scaling behaviors have been observed by Barrett and
Steele (2003) and by Freidel and Louapre (2003) in their studies of the 10j -symbol. It seems
that the 9j -symbol is the simplest spin network in which this phenomenon occurs.

7. The phase

The phases S1 and S2 in (1) each have the form

S =
9∑

i=1

Jiθi, (14)

where θi is the angle between normals of adjacent faces of the geometrical figure. This of
course is similar to the Ponzano–Regge formula, but the 6j -tetrahedron is convex and all
dihedral angles can be taken in the interval [0, π ]. The dihedral angles for the 9j -symbol, on
the other hand, must be allowed to lie in a full 2π interval, as explained momentarily. The
subscripts 1,2 are omitted on S in (14) because the same formula applies to both terms in (1).
The formula must be evaluated, however, on two different geometries, so S1 and S2 are not
equal. In addition, the angles θi lie in different intervals for the two geometries.

11



Class. Quantum Grav. 27 (2010) 135010 H M Haggard and R G Littlejohn

Each edge i of the geometrical figure is adjacent to two faces, for example, edge 4 in
figure 2 is adjacent to faces 1′4′7′ and 456. One face adjacent to edge i contains vector Ji ,
and the other J′

i . Let the two normals of these two faces, according to the conventions given
above, be n̂ and n̂′. Then we define θi as the angle such that

R(ĵ, θi)n̂ = n̂′, (15)

where ĵ is the unit vector along J, specifying the axis of a rotation R by angle θi using the
right-hand rule. In the Ponzano–Regge formula one can compute the dihedral angle from its
cosine, but for the 9j one must also use the sine of the angle. That is, (15) is equivalent to

n̂′ = cos θi n̂ + sin θi ĵ × n̂. (16)

This determines θi to within an additive integer multiple of 2π . We add the further requirement
that for the geometries associated with the first root (the cosine term in (1)), −π � θi < +π ,
while for the second root (the sine term in (1)), 0 � θi < 2π . These ranges for the angle θi

are chosen because they give a continuous branch for the angle over the two root surfaces. It
turns out that θi never crosses ±π on the surface for root 1, and it never crosses 0 or 2π on
the surface for root 2.

The rules given in sections 3 and 4 for converting vectors into surfaces with oriented edges
and triangles are an essential part of the definition of the dihedral angles θi . It is of interest
to see how the angles change when a set of vectors or the associated geometry is subjected to
some symmetry.

Under time-reversal, the orientation of all triangles reverses, that is, the normal vectors
stay the same but the vectors defining the edges are inverted. This means that the angles θi

go into −θi on root surface 1, while they go into 2π − θi on root surface 2 (both changes
guarantee that the angles remain within their respective ranges). Thus, S goes into −S on root
surface 1 and

S → −S + 2πν + 9π (17)

on root surface 2, where ν is the integer

ν =
9∑

i=1

ji . (18)

These guarantee that cos S1 and sin S2 are invariant under time-reversal. Since the same applies
to the amplitudes A1 and A2, one can choose either a geometry or its time-reversed image, for
each root, when evaluating (1).

This completes the definition and geometrical interpretation of all the notation used
in (1).

8. Symmetries of the 9j-symbol

Formula (1) transforms correctly under the symmetries of the 9j -symbol (Varshalovich et al
1981, section 10.4), which state that the 9j -symbol suffers a phase change of (−1)ν under odd
permutations of rows or columns or under transposition. Consider, for example, the swapping
of the first two columns, and let P be the permutation of indices, so that P 1 = 2, P 2 = 1,
P 3 = 3, etc. This maps an old set of nine j ’s into a new set, and old quartic Q(u) = 0 into
a new one, etc. We find that the u root of the old quartic becomes the v root of the new one,
which amounts to saying that the root 1 surface of the old geometry is mapped into the root 2
surface of the new one, and vice versa. Also, the orientations of the three unprimed triangles
reverse, but not those of the primed ones, causing all nine dihedral angles to be incremented
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or decremented by π (depending on the range). If we let θi be the original angles and θ̃i the
new ones, then when θi is on root surface 1 we find θ̃P i = θi + π , which means that the new
angle is in the right range since it is on root surface 2. Similarly, when θi is on root surface 2
then θ̃P i = θi − π , which is in the right range since θ̃P i is on root surface 1. As a result, when
the original geometry is on root surface 1, we have

9∑
i=1

Ji θ̃i =
9∑

i=1

Jiθi + νπ +
9π

2
, (19)

so that sin S̃2 = (−1)ν cos S1, while if the original geometry is on root surface 2, we have

9∑
i=1

Ji θ̃i =
9∑

i=1

Jiθi − νπ − 9π

2
, (20)

so that cos S̃1 = (−1)ν sin S2. The sine and cosine terms in (1) swap under column swap, and
the result acquires an overall phase of (−1)ν , as required. The specified ranges on the dihedral
angles on the two root surfaces are necessary for this to work out.

9. Comments and conclusions

It is easy to derive expression (14) by the method of Roberts (1999), which involves rotating
faces by an angle of π about their normals, and edges by an angle of π about a normal to
them. The phase (14) (times 2) is then an action integral along one Lagrangian manifold and
back along another (the analogs of the A- and B-manifolds of Aquilanti et al (2007)). Similar
expressions apply to any spin network of any complexity. But the contours chosen for the
integration are not unique, in that one can add any multiples of quantized loops on the two
manifolds. These modify both the actions and the Maslov indices, and amount to changing the
choice of branch for the angles θi , that is, adding an integer multiple of 2π to these angles. This
does not leave the trigonometric functions in (1) invariant because the angles are multiplied
by the Ji, which may be half-integers. The result is that the phase of the approximation to the
9j -symbol depends on the contours. A more serious worry is that the contours, that is, the
branches for the θi , may change as we move around in the parameter space of the 9j -symbol.
This would amount to crossing a branch cut for the angles θi (and there are different branch
cuts for different angles). In addition, as we move around in parameter space we can make any
two adjacent faces rotate relative to one another around their common edge as many times as
we want. Although the phases in question are ‘only’ powers of −1, straightening out this issue
was by far the hardest part of this work. In the end we realized that the ranges [−π, +π) on
root surface 1 and [0, 2π) on root surface 2 guarantee that there are no branch cuts and hence
no discontinuities. The ranges specified for the angles θi give us in effect a global, smooth
definition of contours for carrying out action integrals.

We present several numerical comparisons of (1) with the exact 9j -symbol. In
figure 5 approximation (1) (smooth curve) may be compared to the exact 9j -symbol (sticks)
as a function of j 3 for fixed values of the other j ’s. The range chosen lies inside the classically
allowed region, far from a caustic. Figure 6 shows the comparison in a range that crosses a
fold catastrophe, and figure 7 shows the comparison in an interval that passes near a hyperbolic
umbilic catastrophe (the upper point I in figure 4). Approximation (1) is too large near the
point I.

Varshalovich et al (1981) present an asymptotic approximation for the 9j -symbol without
citation (their equation (10.7.1)), which is different from our formula (1). In figure 8 we
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0

−5

×10−7

j3

Figure 5. Comparison of exact 9j -symbol (vertical sticks) with approximation (1), away from a
caustic. Values used are those in (9), with j6 = 50.
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0

-5

-10

j3

×10−7

Figure 6. Like figure 5, but an interval that spans a fold catastrophe (with j6 = 60). Approximation
(1) is discontinued at the caustic, the exact values are continued into the classically forbidden region.

compare the exact 9j -symbol with the formula of Varshalovich et al and with our formula (1),
for the values ⎧⎨

⎩
32 34 j3

28 61/2 81/2
26 73/2 91/2

⎫⎬
⎭ . (21)
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×10−6
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Figure 7. Like figure 6, but passing near an ellipitc umbilic catastrophe (with j6 = 79).
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×10−6
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50 52 54 56 58 60

Figure 8. Near each quantized value of j3, there are three lines. The other eight j ’s are given by
(21). The left line is the exact 9j -symbol, the middle line is approximation (1), and the right is
formula (10.7.1) of Varshalovich et al (1981).

The formula of Varshalovich et al vanishes at many places inside the classically allowed
region, as we have defined it, so it takes some searching to find an interval where both their
formula and ours give nonzero results. On the basis of such comparisons, we believe that the
formula of Varshalovich et al is an asymptotic result in a different sense than ours, or else it
is incorrect.
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The two terms in (1) have different trigonometric functions (sine and cosine) because
there is a relative Maslov index of 2 between the two root surfaces. The relative Maslov index
between a geometry and its time-reversed image is 0, a somewhat surprising result because
in mechanical systems and in the 6j -symbol the Maslov index between a branch or geometry
and its time-reversed image is 1.

When an interior caustic occurs on a root surface, the two geometries that sit above it
form a double cover, in the manner of the Riemann sheet for the square root function. The
internal caustic point I is a branch point for the cover. Geometries transform continuously into
their time-reversed images as we go around the point I, without crossing a caustic.

Several studies of the asymptotics of spin networks have started with an integral
representation of the network, to which the stationary phase approximation is applied. Roberts
(1999) represented the 6j -symbol as a scalar product in a certain Hilbert space, which
was put into the coherent state representation, whereupon the integral was evaluated by the
stationary phase approximation. Coherent states have played a prominent role in many recent
semiclassical studies. Our approach has been to work as much as possible in a representation-
independent manner. For example, the stationary phase points are seen as intersections of
Lagrangian manifolds. Some of the basics of this approach were presented in Aquilanti et al
(2007). We have not specifically used the coherent state or any other representation.

Some aspects of this calculation carry through in an obvious way to higher spin networks,
while for others nontrivial generalizations seem to be required. But we believe that an
understanding of the 9j results are necessary for a full understanding of the asymptotics of
higher spin networks.

We will report in more detail on the derivation of (1) in a later publication.
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