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Abstract

The zeroth principle of thermodynamics in the form “temperature is uniform at equilibrium” is

notoriously violated in relativistic gravity. Temperature uniformity is often derived from the max-

imization of the total number of microstates of two interacting systems under energy exchanges.

Here we discuss a generalized version of this derivation, based on informational notions, which

remains valid in the general context. The result is based on the observation that the time taken by

any system to move to a distinguishable (nearly orthogonal) quantum state is a universal quantity

that depends solely on the temperature. At equilibrium the net information flow between two sys-

tems must vanish, and this happens when two systems transit the same number of distinguishable

states in the course of their interaction.
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According to non-relativistic thermodynamics, a thermometer (say, a line of mercury in

a glass tube), moved up and down a column of gas at equilibrium in a constant gravitational

field, measures a uniform temperature.1 But this prediction is wrong. Relativistic effects

make the gas warmer at the bottom and cooler at the top, by a correction proportional to c−2,

where c is the speed of light. This is the well known Tolman-Ehrenfest effect, discovered in

the thirties [2, 3] and later derived in a variety of different manners [4–12]. The temperatures

T1 and T2 measured by the same thermometer at two altitudes h1 and h2 in a Newtonian

potential Φ(h) are related by the Tolman law

T1

(
1 +

Φ(h1)

c2

)
= T2

(
1 +

Φ(h2)

c2

)
. (1)

This law can also be expressed in a general-covariant fashion

T |ξ| = const., (2)

where |ξ| is the norm of the timelike Killing field on a stationary spacetime.

A violation of the uniformity of temperature seems counterintuitive at first, especially

if one has in mind a definition of “temperature” as a label of the equivalence classes of all

systems in equilibrium with one another. In a relativistic context a physical thermometer

does not measure this label and we must therefore distinguish two notions: (i) a quantity

τo defined as this label (proportional to the constant in (2)), and (ii) the temperature T

measured by a standard thermometer.

In the micro-canonical framework maximizing the total number of states N = N1N2 un-

der an energy transfer dE between two systems gives T1 = T2. In the presence of relativis-

tic gravity, this derivation fails because conservation of energy becomes tricky: intuitively

speaking, the energy dE reaching the upper system is smaller than the one leaving the lower

system because “energy weighs”.

Is there a more general statistical argument that governs equilibrium in a relativistic

context? Can the Tolman law be derived from a principle generalizing the maximization

of the number of microstates, without recourse to specific models of energy transfer, as is

commonly done in the derivations of the Tolman-Ehrenfest effect? In this essay we show

that the answer to these questions is positive, and provide a generalization of the statistical

derivation of the uniformity of temperature, which remains valid in a relativistic context.

1 A longer version of this essay has also appeared in PRD [1].
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FIG. 1: Typical overlap between ψ(0) and ψ(t) as a function of time.

The core idea is to focus on processes, or histories, rather than states [13]. We demon-

strate that one can assign an information content to a history, and two systems are in

equilibrium when their interacting histories have the same information content. Equilib-

rium in a stationary spacetime, namely the Tolman law, is our short-term objective, but

our long-term aim is understanding equilibrium in a fully generally covariant context, where

thermal energy can flow also to gravity [14–16], therefore we look for a general principle that

retains its meaning also in the absence of a background spacetime.

Consider a conventional hamiltonian system with hamiltonian operator H. Let ψ(0) be

the state at time zero and ψ(t) its evolution. What is the time scale for ψ(t) to become

significantly distinct from ψ(0)? The separation of the state from its initial position is given

by the overlap between ψ(0) and ψ(t), namely P (t) = |〈ψ(0)|ψ(t)〉|2. The typical behavior

of P (t), for instance in the case of a semiclassical wave packet, is as in Figure 1. Let us call

to the characteristic decay time for the system self overlap. What is its value? The time

to can be estimated by Taylor expanding P (t) for small times. The first time derivative of

P (t) clearly vanishes at t = 0 which is a maximum, therefore we get the time scale from the

second derivative. A straightforward calculation gives

d2P (t)

dt2
= − 1

~2
(〈H2〉 − 〈H〉2) = −(∆E)2

~2
, (3)

which implies a characteristic decay time to = ~/∆E, in accord with the time-energy Heisen-

berg principle, and with the fact that energy eigenstates “do not change”.

Let us now consider a system in thermal equilibrium with a thermal bath at temperature
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T . Its mean energy is going to be kT and the variance of the energy is also kT . Thus we

have ∆E ∼ kT . At a given temperature T , the time step to = ~/kT is, according to the

previous discussion, the average time the system takes to move from a state to the next

(distinguishable) state. This average time step is therefore universal: it depends only on the

temperature, and not on the properties of the system.

The dimensionless quantity τ = t/to measures time in units of the time step to, that is,

it estimates the number of distinguishable states the system has transited during a given

interval. For a system in thermal equilibrium, to = ~/kT gives

τ =
kT

~
t. (4)

The quantity τ was introduced in [14, 15] and called thermal time. It is the parameter of

the Tomita flow on the observable algebra generated by the thermal state.

The argument above unveils the physical interpretation of thermal time: thermal time,

which is dimensionless, is simply the number of distinguishable states a system has transited

during an interval. Notice also that temperature is the ratio between thermal time and

(proper) time, T = ~τ/kt [17]. Accordingly, in ~ = k = 1 units temperature is measured in

“states per second” and is precisely the number of states transited by the system per unit

of (proper) time. This is the general informational meaning of temperature.

Let us come to the notion of equilibrium. Consider two systems, System 1 and System

2, that are in interaction during a certain interval. This interaction can be quite general

but should allow exchange of energy between the two systems. During the interaction

interval the first system transits N1 states, and the second N2, in the sense illustrated

above. Since an interaction channel is open, each system has access to the information

about the states the other has transited through the physical exchanges of the interaction.

Recall that information, as defined by Shannon [18], is simply a measure of a number of

states.

System 2 has access to an amount of information I1 = logN1 about System 1, and

similarly in reverse. Let us define the net flow of information in the course of the interaction

as δI = I2 − I1. Equilibrium is by definition invariant under time reversal, and therefore

any flow must vanish. It is therefore interesting to postulate that the information flow δI

vanishes at equilibrium. Let us do so, and study the consequences. That is, we consider the
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possibility of taking the vanishing of the information flow

δI = 0 (5)

as a general condition for equilibrium, generalizing the maximization of the number of

microstates of the non-relativistic formalism.

Let us see what this implies. At equilibrium N1 = N2. Since the rate that states are

transited is given by τ and we assume a fixed interaction interval, the equilibrium condition

also reads τ1 = τ2. Now, consider a non-relativistic context where two systems are in

equilibrium states at temperatures T1 and T2, respectively. In the non-relativistic limit,

time is a universal quantity, which we call t. Therefore the condition τ1 = τ2 together with

(4) implies that T1 = T2, which is the standard non-relativistic condition for equilibrium:

temperature is uniform at equilibrium. On a curved spacetime, contrariwise, (proper) time

is a local quantity ds that varies from one spatial region to another. Therefore thermal time

is given by dτ = (kT/~)ds. In order for equilibrium to exist on a given spacetime, spacetime

itself must be stationary [19, 20], namely have a timelike Killing field ξ, and equilibrium will

be ξ invariant. Proper time along the orbits of ξ is ds = |ξ|dt where t is an affine parameter

for ξ. Therefore thermal time is now

dτ =
kT

~
|ξ|dt. (6)

If two systems located in regions with different |ξ| are in thermal contact for a finite interval

∆t, then they are in equilibrium if |ξ|T has the same value. This is precisely the Tolman

law (2). Therefore the generalized first principle (5) gives equality of temperature in the

non relativistic case and the Tolman law in the general case.

In static coordinates, ds2 = g00(~x)dt2 − gij(~x)xixj and thermal time is proportional to

coordinate time. The Killing vector field is ξ = ∂/∂t and |ξ| =
√
g00. In the Newtonian

limit g00 = 1 + 2Φ/c2 and we recover (1).

Returning to the cylinder of gas in a constant gravitational field we see that during a

coordinate-time interval ∆t the proper times lapsed in the upper and lower systems are

different: identical clocks at different altitudes run at different rates. But the lower system

is hotter, its degrees of freedom move faster in clock time from one state to the next. This

faster motion compensates exactly the slowing down of proper time, so that upper and lower

systems transit the same number of states during a common interaction interval ∆t. This

result provides a simple and intuitive interpretation of the Tolman effect.
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We have suggested a generalized principle for equilibrium in statistical mechanics, formu-

lated in terms of histories rather than states and expressed in terms of information. It reads:

Two histories are in equilibrium if the net information flow between them vanishes, namely

if they transit the same number of states during the interaction period. This is equivalent to

saying that the thermal time τ elapsed for the two systems is the same.

In non-relativistic physics, time is universal and the above principle implies that temper-

ature is uniform at equilibrium. On a curved spacetime, proper time varies locally and what

is constant is the product of temperature and proper time. We have seen that temperature

admits an informational interpretation as states transited per second, consistent with its

units (second−1 if ~ = k = 1). Temperature is the rate at which systems move from state

to state.
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