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Aix-Marseille Université and Université de Toulon, CPT-CNRS, Luminy, F-13288 Marseille

We present a metric that describes conventional matter collapsing into a black hole, bouncing and
emerging from a white hole, and that satisfies the vacuum Einstein equations everywhere, including
in the interior of the black hole and the subsequent white hole, except for a small compact 4d
“quantum tunnelling” zone. This shows that a black hole can tunnel into a white hole without
violating classical general relativity, where it can be trusted. We observe that quantum gravity can
affect the metric in a region outside the horizon without violating causality because small quantum
effects might pile up over time. We study how quantum theory can determine the bounce time.

Black holes are now normal astrophysical objects, but
we know surprisingly little about what happens inside
them. General relativity (GR) appears to describe well
the region surrounding the horizon [1], and this is also
likely true of a substantial region inside the horizon. But
classical GR must fails to describe Nature at small radii
because nothing prevents quantum mechanics from af-
fecting the high curvature zone, and classical GR be-
comes ill-defined at r= 0 anyway. The current tentative
quantum gravity theories, such as loops and strings, are
not sufficiently understood to convincingly predict what
happens at small radii, so we are quite in the dark: what
happens to gravitationally collapsing matter?

Here we explore the possibility that when matter
reaches Planckian density quantum gravity generates suf-
ficient pressure to counterbalance its weight, the collapse
ends, and matter bounces out. This is similar to the way
the wave packet representing a collapsing universe tun-
nels into an expanding universe in loop cosmology [2]. A
collapsing star might similarly avoid sinking into r = 0,
much as a quantum electron in a Coulomb potential does.
Such “Planck star” [3] phenomenology has been consid-
ered before [4–14]. The picture is like Giddings’s rem-
nants [15], with a macroscopic remnant developing into
a white hole [16]. (For a similar global setup, but quite
distinct interpretation, see [17].) In particular, we study
whether this picture is compatible with a realistic metric
satisfying the Einstein equations where classical GR can
be trusted, which includes regions inside the horizon.

Surprisingly, we find that such a metric exists: it is
an exact solution of the Einstein equations everywhere
including a portion inside the Schwarzschild radius rs,
except for a finite—small, as we shall see—region, sur-
rounding the points where the classical Einstein equa-
tions are likely to fail. It describes conventional in-falling
and then out-coming matter. The reason this metric has
so far escaped notice is that it is locally isometric to the
Kruskal solution (outside the quantum region), but it is
not a portion of the Kruskal solution. Rather, it is a
portion of a double cover of the Kruskal solution, in the

sense that there are distinct regions isomorphic to the
same Kruskal region.

A number of indications make this scenario plausi-
ble. Hájček and Kiefer [18, 19] have studied the quan-
tum dynamics of a null spherical shell coupled to grav-
ity and shown that an in-falling wave packet can tun-
nel (“bounce”) into an expanding one and Ambrus and
Hájček [20] have attempted a calculation of the bounce
time. Here we show that the Hájček-Kiefer external so-
lution can be extended to include a classical portion of
the interior of the black hole, as well as a later portion
of the interior of the white hole. The existence of this
solution of the Einstein equtions shows that it is possible
to have a black hole bouncing out into a white hole with-
out affecting spacetime in the regions where we expect the
classical theory to be good.

A distant observer sees a dimming, frozen star that
reemerges, bouncing out after a very long time, deter-
mined by the star’s mass and Planck’s constant. The
importance of studying this scenario cannot be underes-
timated, because, if realised, it could yield directly ob-
servable quantum gravitational phenomena [21, 22].

For this scenario to be possible, genuine quantum
gravitational effects should appear outside the horizon.
These are suppressed in the approximation provided
by local quantum field theory on a curved geometry.
Their possibility, however, cannot be ruled out in a
non-perturbative quantum theory of gravity, and is in-
creasingly considered plausible by a number of authors,
on the basis of diverse considerations [23–26]. These
converge in suggesting that local quantum field theory
might fail to account for quantum gravity phenomena.
In the following, we give further arguments in this
direction, we construct the metric describing this physics
explicitly, then we discuss how quantum mechanics can
describe the bounce across the non-classical region.
We also estimate the radius at which these effects are
stronger (which could be relevant for [23]) and the order
of magnitude of the bounce time, obtaining a result
more realistic than the one in [20].
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FIG. 1. (a) The spacetime of a bouncing star. (b) The mir-
rored ball is in grey, the thick lines represent the bouncing
shell of light. The dotted line is the observer and the bounce
time τ is indicated.

We search for the metric of a bouncing star by glu-
ing a collapsing region with its time reversal [27]. This
describes an elastic process that disregards dissipative
effects, which are not time-reversal symmetric. In par-
ticular, we disregard Hawking radiation. As we shall see,
the process we are studying could be faster than Hawk-
ing’s (extremely long) evaporation time, so that this can
be disregarded in a first approximation (see [28, 29]).

We start with a spherically symmetric spacetime with
an in-falling spherical shell of (for simplicity) null mat-
ter. The shell moves in from past null infinity, enters
its own Schwarzschild radius rs, keeps ingoing, enters
the quantum region, bounces, and then exits rs and
moves outwards to infinity. We assume that there are no
event horizons: the causal structure is that of Minkowski
spacetime, and we demand that the quantum process is
quasilocal, i.e. confined to a finite region of spacetime.

Because of spherical symmetry, we can use coordinates
(u, v, θ, φ) with u and v null coordinates in the r-t plane.
The metric is then determined by two functions of u and
v: ds2 =−F (u, v)dudv+r2(u, v)(dθ2+sin2θdφ2). We take
the t = v − u = 0 hyperplane as the surface of reflection
under time reversal and represent it in a conformal dia-
gram by an horizontal line, see Fig. 1(a). By symmetry,
the bounce must be at t = 0. For simplicity, we assume
that it is at r = 0. The two shells are represented by
the two thick lines in Fig. 1(a). Two significant points,
∆ and E lie on the boundary of the quantum region. The
point ∆ has t = 0 and is the maximal extension in space
of the region where the Einstein equations are violated.
Point E is where the shell enters the quantum region.

Thanks to time-reversal symmetry, it is sufficient to
construct the metric below t = 0. The spacetime splits
into three regions. See Fig. 1(a): Region I, inside the
shell, must be flat by Birkhoff’s theorem. Region II,
again by Birkhoff’s theorem, must be a portion of the
Kruskal-Szekeres metric of a mass m. Finally, region III
is where quantum gravity becomes non-negligible. The
only requirement we impose about the (effective) metric
here is to join smoothly the rest of the spacetime.

FIG. 2. The portion of a classical black hole spacetime which
is reproduced in the quantum case. The contours r = 2m are
indicated in both panels by dashed lines.

Region I is easy: the Minkoswki metric in null coordi-
nates (uI , vI) is given by F (uI , vI) = 1 and rI(uI , vI) =
vI−uI

2 . It is bounded by the past light cone of the origin,
that is, by vI = 0.

Region II is a portion of Kruskal spacetime. Consider
the darker portion of Fig. 2 bounded on the left by an
ingoing null shell. The point ∆ is a generic point in
the region outside the horizon; we take it on the t = 0
surface, so that the gluing with the future is immedi-
ate. Crucially, E must be inside the horizon, because
when the shell enters the horizon the physics is still clas-
sical. Therefore the region II is isometric to the darkly
shaded region of Kruskal spacetime depicted in Fig. 2,
which includes a portion of the black hole’s interior. In
null Kruskal–Szekeres coordinates (u, v) the metric of the

Kruskal spacetime is given by F (u, v) = 32m3

r e−
r

2m with
r the function of (u, v) defined by

(
1− r

2m

)
e

r
2m = uv.

The region of interest is bounded by a constant v = vo
null line. The constant vo cannot vanish, because v = 0
is an horizon, which is not the case for the in-falling shell.
Therefore vo is a constant that determines our metric.

Matching regions I and II is key to what follows. The
v coordinates match simply by identifying vI = 0 with
v = vo. The matching of the u coordinate is determined
by the requirement that the radius must be equal across
the matching, that is rI(uI , vI) = r(u, v). This gives

u(uI) = 1
vo

(
1 + uI

4m

)
e−

uI
4m . If the induced 3-metrics on

the boundaries agree it turns out that it is not neces-
sary to impose further conditions [30–32]: the extrinsic
geometries also match.

The matching condition between the region II and its
time reversal along the t = 0 surface is immediate. But
note that the ensemble of these two regions is not a por-
tion of Kruskal space, but rather a portion of a double
cover of it, as in Fig. 2: the bouncing metric is obtained
by “opening up” the two overlapping flaps in the figure
and inserting a quantum region in between.

Finally, it is easy to give an ansatz for the metric in
the quantum region III. We do not do it here explic-
itly because a credible effective metric for this region,
including a determination of the points E and ∆ and the
line connecting them, requires a better understanding of
quantum gravity. We take E to be the point that has
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(uI , vI) coordinates (−2ε, 0) and ∆ the point that has
Schwarzschild radius r∆ = 2m + δ and lies on the sym-
metry line u + v = 0. The value ε is determined by the
onset of quantum effects on the collapsing shell. The
point ∆ must be outside the point where the two shells
cross in the left panel of Fig. 1. Therefore δ is positive
and its lowest possible value is determined by v0.

The parameter vo codes the time it takes the full pro-
cess to happen. This can be seen as follows. Consider an
observer at fixed radius R > r∆. A straightforward cal-
culation gives the proper time of this observer between
its encounter with the ingoing shell and t = 0

τR =

√
1− 2m

R

(
R+ 2m ln

R− 2m

2m
− 4m ln vo

)
. (1)

If vo is very small, the last term dominates all other scales
in the problem, and for a distant observer (R�2m) we
can write an “asymptotic bounce time” τ = −4m ln vo.

Remarkably, the duration of the process seen by an
outside observer is arbitrarily long in comparison to
the one measured by an observer inside the collapsing
shell: the proper time between the two encounters with
the shell, measured in the interior Minkowski metric,
in the frame of the shell, is only 2R. Therefore the
process we are describing can be very fast seen from the
interior of the star, but very slow, due to relativistic time
dilatation, viewed from the outside. An astrophysical
black hole could be a bouncing star seen in extremely
slow motion because of its colossal relativistic time
dilation. A metric describing the quantum bounce of a
star is thus defined. According to an external observer,
the entire process is characterized by two numbers: m
and v0, or, equivalently, m and the bounce time τ .

Understanding what happens in region III requires a
quantum theory of gravity. To begin with, this must de-
termine ε, the radius where the shell starts to be affected
by quantum theory. Conventional arguments suggest
that this happens when the curvature becomes Planck-
ian; this gives ε∼ (m/mp)

1
3 lp [3], where lP is the Planck

length and mP the Planck mass (we use c = G = 1 units).
Note that for a macroscopic m this radius is much larger
than the Planck length [3].

More importantly, since the initial data know only
about m (due to the time translation invariance of
Minkowski space), the quantum theory must establish
the (probabilistic) dependence of τ on m. How? The
quantum region is bounded by a hypersurface whose (in-
trinsic and extrinsic) geometry depends on m and vo.
Given a classical boundary geometry, we can in prin-
ciple compute its associated quantum transition ampli-
tude. This amplitude is a function A(m, τ) of the pa-
rameters that determine the geometry. The parame-
ter region where the corresponding probability becomes
non-negligible, |A(m, τ)|2 ∼ 1, determines a relation

τ = τ(m) which predicts the (mean) decay time for a
black hole.

Since there is no classical solution that matches the in
and out geometries of this region, this calculation is con-
ceptually somewhat similar to a tunneling calculation in
quantum mechanics. Formally, this is the path integral
over internal geometries, contracted with the boundary
state representing the boundary geometry. Concretely,
this is precisely the form of the problem that is adapted
for a calculation in a theory like covariant loop quantum
gravity [33], which is defined to give amplitudes associ-
ated to boundary states of the geometry.

This calculation has not yet been performed. But we
can still estimate τ = τ(m) using a simple model that
mimics many features of the external metric of a bounc-
ing hole, and to which we now turn. This model allows
us to address also a key conceptual point: the possibility
that quantum theory affects a region outside rs.

Consider a ball of radius a with a reflective surface
and negligible mass, at rest in flat space [20]. A shell of
light, with total energy m centered on this mirrored ball,
comes in from infinity, and reflects off it (Fig. 1(b)). An
observer sitting at a reference radius R will measure a
proper time 2τR between the shell’s inward and outgoing
passes. For a�2m, relativistic effects are negligible, and
τR ∼ R − a: the time it takes light to reach the mir-
ror. As a approaches 2m, we enter a general relativistic
regime. The metric outside the shell is Schwarzschild and
a straightforward calculation gives [20]

τR =

√
1− 2m

R

(
R− a− 2m ln

a− 2m

R− 2m

)
, (2)

which can be compared with (1). For an observer at
large radius R� 2m, this expression simplifies, to τR ∼
(R− a)− 2m ln a−2m

R . In addition to the non-relativistic
light-travel-time (R−a), there is a logarithmic, relativis-
tic correction. When a → 2m the bounce time becomes
arbitrarily large: τR −→

a→2m
+∞. This divergence is real-

ized for any fixed value of R > 2m, hence observers agree
that the bounce time becomes arbitrarily long.

Notice the strong effect of general relativistic time di-
latation: near the bounce, R ∼ a, the bouncing proper
time is short; the shell reaches the mirrored ball and
bounces out always moving at the speed of light. Seen
locally the process is fast. But since the bounce happens
close to rs, the slowing of the local time with respect to
an observer far away is huge. This, we stress, is standard
classical GR: classical GR is compatible with an incoming
null shell that then expands out at a much later time.

The classical theory predicts that when a reaches 2m
the bounce time becomes infinite: the light remains
trapped forever and a singularity forms. But this pic-
ture disregards quantum theory. When and how does
quantum theory enter the game, as a approaches 2m?

By analogy with conventional quantum tunnelling one
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may be tempted to guess an exponential dependence of
the bouncing time τ on m2/~ as the onset of quantum
phenomena. This possibility cannot be ruled out, but a
number of argument makes it less plausible. First, the
exponential weight comes from a saddle point approxima-
tion, where, however, it is balanced by a measure factor.
In the case of black holes, this is the same factor that
measures the entropy, which is exponential in the mass
squared as well. As argued by S. Mathur [25], we expect
these two exponential scalings to cancel.

We can get a better insight by asking when do we
expect the quantum theory to fail. Consider an ob-
server at a small radius R not much larger than a.
The curvature at the observer’s position is constant in
time after the shell has moved in, and is of the or-
der of R ∼ m/R3. (The Kretschmann invariant is

R2 = RabcdRabcd = 48m2

r6 .) We expect local quantum
gravity effects to be small, but non-vanishing, in a small
curvature region. An estimate of the magnitude of these
effects can be obtained from the quantum corrections to
the classical equations of motion. These are proportional
to ~. After a proper time τ the resulting relative quan-
tum effect is of the order q = lP R τ, which implies
that they can drive the classical solution substantially
(q ∼ 1) away from the classical solution in a proper time
τ ∼ (lP R)−1 ∼ m2/lP . Thus, a cumulative quantum
effect, can be relevant also in a region of small curvature,
provided that is has enough time to act: there is no rea-
son to trust the classical theory outside the horizon for
arbitrarily long times, sufficiently close to rs.

Let us be more general and more precise. Assume the
classicality parameter is q = l2−bP R τ b, with b reason-
ably taken in the range b ∈ [ 1

2 , 2]. A straightforward
calculation in the Schwarzschild metric shows that the
maximum value of q occurs at Rq = 2m (1 + b/6) +
O (1/ln(a− 2m)), which is a finite distance, but not
much, outside rs. (Notice the nice separation of scales:
the result Rq is independent of a in the a→ 2m limit.)
Quantum effects can appear at a reasonable location in
space: a macroscopic distance from the Schwarzschild ra-
dius, necessary for the long bounce time, but close to it,
so that the curvature is still reasonably large. Requir-

ing q ∼ 1 at this radius gives τ ≈ (2lp
1− 2

b kb) m
2
b , with

k = 27(4b)
b
2 /(b + 6)3+ b

2 . In the likely case b = 1 the
quantum effects appear at a distance R = 7

6 2m after an

asymptotic time τ = 2k m2

lP
. That is, quite independent

of the value of b, it is possible that quantum gravity af-
fects the exterior of the Schwarzschild radius already at
a time of order m2. Note that this effect has nothing to
do with the r = 0 singularity: there is no singularity, nor
a horizon in the physics considered in the mirrored ball
model. The common argument according to which there
cannot be quantum gravity effects outside the horizon,
since this region is causally disconnected from the inte-
rior of the horizon, is wrong. There is room for quantum

gravity even if there is no interior of the horizon at all.

Let us return to our full bounce metric. Since ∆ > 2m
the classical equations fail (during a finite time) also out-
side the horizon: this is why the black hole horizon is not
an event horizon. As we have just seen, this is not a suffi-
cient reason for excluding quantum gravity effects in this
region, as is often done. There is no causality violation,
because the quantum transition outside the horizon is
driven by the long time there, and not by physics from
the vicinity of r = 0.

In conclusion, we have found a classical metric describ-
ing (the non quantum region of) a black hole that tunnels
into a white hole. Indirect arguments point to an asymp-
totic bounce time of the order of τ ∼ m2/lP . This is very
long for a macroscopic black hole (about 1032 seconds
for a solar mass), but is much shorter than the Hawking
evaporation time, which is of order m3. Clearly this re-
sult affects the discussion on the black hole information
puzzle. In this regard, the firewall argument [34] shows
that under a certain number of assumptions “something
strange” appears to have to happen at the horizon of a
macroscopic black hole. Here we point out that indeed it
does, independently from the Hawking process. But, it is
a less dramatic phenomenon than expected: the space-
time can quantum tunnel out of the black hole and this
can happen without violating causality because over a
long stretch of time quantum gravitational effects can
accumulate outside the horizon.

More interesting, this phenomenon could open a novel
window on quantum gravity phenomenology [21, 22].
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