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Three streams of motivation

Build a 4D spinfoam with
cosmological constant...

... connect loop gravity to
knot & Chern-Simons theory.

...explore curved, dynamically
evolving discrete geometries...



A set of N area vectors that closes uniquely determines a convex
Euclidean polyhedron of N faces. (Minkowski 1897)

~a1 + · · ·+ ~aN = 0

Non-constructive proof: an
existence and uniqueness result
that relies on convexity.

Major difficulty in constructive
approach is determining the
adjacency ahead of time.
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A spherical tetrahedron is
4 points of S3 connected
by geodesics

Each face is a triangular portion of a great 2-sphere!

� Great spheres are flatly embedded in S3 (i.e. Kij = 0)

Hence, the normal to a face
is well-defined and invariant
under parallel transport



Holonomies are the crown jewel of gravitational observables:
convert flux variables to ‘transverse’ holonomies

A fun calculation shows the
holonomy has angle the face
area:

O = exp
( a

R2 n̂ · ~J
)
, O ∈ SO(3)

Idea: the closure relation should be replaced by the automatic
homotopy constraint [Bonzom, Charles, Dupuis, Girelli, Livine]

O4O3O2O1 = 1l

For R→∞

O4O3O2O1 = 1l + R−2(a1n̂1 + a2n̂2 + a3n̂3 + a4n̂4) · ~J + · · · = 1l



How do you access the global geometry? We use ‘simple’ paths.

The Gram matrix

G =


1 n̂1 · n̂2 n̂1 · n̂3 n̂1 · n̂4
∗ 1 n̂2 · n̂3 n̂2 ·O1n̂4
∗ ∗ 1 n̂3 · n̂4

sym ∗ ∗ 1


is geometrically meaningful.

Get by tracing: 〈O`Om〉C = 1
2Tr (O`Om)− 1

4Tr (O`)Tr (Om),

n̂` · n̂m = 〈O`Om〉C√
1− 〈O`〉

√
1− 〈Om〉
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A wealth of troubles; and the new insights they bring.

� What determines the sign of the curvature?
 The holonomies do it directly, through G.{

det G > 0 spherical geometry
det G < 0 hyperbolic geometry

There is no need for another group.

♣ Geometrical counterpart:
which tetrahedron and why?

 Convexity is essential;
encoded in triple products

2D analogy



The new hyperbolic triangle

Continue path past hyperbolic ∞, assuming zero added holonomy

Generalized triangles have a full [0, 2π] range of ‘holonomy’ areas



♣ Finally we introduce a spin lift,

O` −→ H`, H` ∈ SU (2)

 H` from spin connection it’s automatic; can be constructed

Result: a full constructive proof of the Minkowski theorem for all
curved tetrahedra
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Transverse holonomies are, like fluxes, phase space variables

The conjugacy class of an
holonomy sweeps out a
2-sphere in SU (2) ∼= S3.

Each holonomy acts like a curved
vector; really a geodesic segment
from id to the group element.
 SU (2) essential: H = e−i a

2 n̂·~σ

This 2-sphere is symplectic, an orbit of the dressing action of a
Poisson-Lie group (∼ q-def.) =⇒ can use symplectic tools!

[Amelino-Camelia, Freidel, Kowalsky-Glikman, Smolin]



Like the flat case, we can construct a phase space of shapes

Form product of 4 fixed conj class (const area) spheres and
symplectically reduce by overall rotations [Ditrrich & Bahr, Treloar]

Distinct polyhedra (hence intertwiners for quantum theory with
cosmo const) correspond to different shapes of a spherical polygon

� Immediately conclude the volume of curved tetrahedra quantized
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The moduli space of flat connections on a 4-punctured sphere is
symplectomorphic to the phase space of shapes just described

4D: These relationships can be lifted into SL(2,C) Chern-Simons
theory. Holonomy-flux algebra encoded by transverse-longitudinal
holonomy Poisson brackets on a Riemann surface arising as the
knot complement of Γ5 in S3.

We have shown that the asymptotics of combined EPRL-CS theory
is the Regge action plus the cosmo term with the curved 4-volume.



Conclusions
We have:
1. proven a constant curvature Minkowski theorem for tetrahedra
2. found the phase space of shapes for this geometry and learned

that the volume spectrum for curved tetrahedra is discrete; we
do not yet control the values of this spectrum

3. leveraged these constructions to build a new spin foam model
including a cosmological constant. This model has elegant
asymptotics, recovering the discretized Einstein-Hilbert action
with exactly the cosmological constant term for a 4-simplex

Conjecture: There exists a unique convex constant curvature
polyedron with N faces whenever [HMH, Freidel & Livine, Speziale]

HN · · ·H1 = 1l, Hi ∈ SU (2)
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