Hal Haggard & Aldo Riello
with Muxin Han & Wojciech Kaminski

November 25th, 2014

International Loop Quantum Gravity Seminar



The cosmological constant is non-zero: A = 2.90 x 10122 Egz

Why quantum groups in 4D?
Seek a (possibly more general) constructive route

We are lead to couple Loop Quantum Gravity to Chern-Simons theory,
the result has strong relations with previous Hamiltonian studies

A more geometric language that casts light on the asymptotics



We enlarge the usual framework,
taking tools from Chern-Simons theory into spinfoams C

We develop a new description of
curved simplices in 3 and 4d,
where holonomies also encode fluxes

We obtain both A < 0,
the sign being determined dynamically
at the semiclassical level

We find that /A must be quantized



for now the construction is at the single 4-simplex level only

The equations of motion define non-perturbatively curved 4-simplices,
of positive and negative curvature

The Regge action for curved 4-simplices augmented by the cosmological tferm
is recovered exactly (work in progress on an extra term that we seem to obtain)

SRegge: Z at@t_/\v4

triangles



Construction and definition of the model /AEPRL

The equations of motions (EoM)

Focus on 3d curved geometries, and their reconstruction from the EoM

Towards a deformed phase space for curved quantum geometries



EPRL philosophy

Regge’s philosophy:
construct a manifold out of flat building blocks + (d — 2)-dimensional defects

At the quantum level,
flatness is implemented via BF dynamics in the bulk of building blocks, while

defects are created by using only geometric boundary states
(thus breaking B F symmetries)




At the level of a single building block,
the EPRL amplitude of the 3d spin-network boundary state 1 is

holonomy
. of A
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dual to 4-simplex boundary
SL(2,C)

spin connection

B is the ‘bivector’ field
(B = xe /\ e on geometric states)

fy is the Dupuis-Livine map,
it embeds 1 into spacetime *(drawing is in one dimension less)



/\EPRL philosophy

/ARegge’s philosophy:
construct a manifold out of homogeneously curved building blocks +
(d — 2)-dimensional defects ©anr & Dittrich)

At the quantum level,
the homogenous curvature is implemented via BF — %BB dynamics, and
defects are created as in the flat case




/\AEPRL mathematics
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where the Chern-Simons functional is
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The /AEPRL 4-simplex amplitude

Twisting the previous construction by using the y-Holst action finally gives

Z pepru(Wr) = J DADA e ESIAIHESSIAL (£, 1) (G[A, A)

where (A, A) are the self- and antiself-dual parts of A
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h:= A (y —|—|) is the complex CS level

Remark
Z ArprL INVolves only quantities living on the boundary of the building block




. 127
h:= A L2

The CS level h is complex, hence there is
no (known) quantum group structure associate to the graph evaluation

Invariance of the amplitude under large gauge transformation A — A9
implies R(h) € Z, i.e.
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h:= 127
A2

Vanishing cosmological constant A — 0:
h — 00, thus CS is projected onto its classical solutions ~~ flat EPRL

g-deformed Lorentzian Barrett-Crane amplitude:
when vy — 00, the EPRL graph operator goes into Barrett-Crane’s,
while h becomes € IR, giving q = exp (—K%/Rf\)

Semiclassical /ARegge limit: more about this in a second
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The semiclassical /A\Regge limit

lp =0, j—o00, with ags=7yI5j=cnst

{p — 0 means h — oo, which corresponds to CS classical flat limit,
however

j — 0o makes the Wilson graph operator stand out and
act as a distributional source for (A, A),

thus avoiding flatness
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The graph complement S3 \ I

["is the graph dual to the 4-simplex boundary

~ tubular
neighborhood
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There are two types of holonomies in S3\ I":
transverse Hy, (a)
longitudinal Gy o

where @, b, ... label the graph vertices

We need to specify the exact paths
This is called a

longitudinal paths
run on the
‘top” of the tubes

basapoint
at vertex a
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The connection on the graph complement is flat, hence

holonomies along contractible paths are trivial:

closures ﬁb Hy(a) =1

parallel fransports
GbaHb(a)Gap =Hq(b) ™

around 5 out of the 6 independent ‘faces’

GacGCbia =1

while, around the last independent ‘face’:
G34Ga2G23 = H;(3)

(/

N
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These equations of motion are
enough to reconstruct the full
4D geometry of the 4-simplex.

The reconstruction is more tfransparent
in 3D ~~ will show you this with
emphasis on the connections to 4D
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A spherical tetrahedron is 4 points of S3 connected by geodesics

Each face is a triangular 4
portion of a great 2-sphere (

¢ Great spheres are flatly embedded in S3 (i.e. Kij =0)

1

The normal to a face is well-defined
and invariant under parallel transport
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The holonomy around a curved triangle is equal to the area of the triangle

18



The holonomy around a curved triangle is equal to the area of the triangle

Parallel transport of the tangent
vector is eqsy
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The holonomy around a curved triangle is equal to the area of the triangle

@

Pick up the next tangent vector

and infroduce the complement

B=m—B

This angle is preserved under
fransport
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The holonomy around a curved triangle is equal to the area of the triangle

Repeat

21 I
I
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The holonomy around a curved triangle is equal to the area of the triangle

®I
I
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The full holonomy is a
counterclockwise rotation about
the normal with angle

00 a=2m—&—p—Y
% =x+p+y—m,

the area of the spherical triangle!
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We have converted flux variables to ‘transverse’ holonomies

Our calculation shows that the
holonomy can be cast as:

O = exp (%ﬁ-f), 0 €SO(3)

|dea: the closure relation should be replaced by the automatic homotopy
constraint

04030,0; =1

This is the SO(3) version of our egn of motion, slide 15. For R — oo

04030501 = 14+R72(ayAi; + apfip +azfiz + agfg) - J4+--- =1
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How do you access the global geometry? We use ‘simple’ paths.

Requiring that the faces of " only
intersect along its edges...

...and using the framing discussed
above uniguely fixes the paths.
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The simple paths determine a geometrically meaningful curved Gram matrix.

4

The geometrical dot product is well defined at vertex 4,
but we have to rotate fo give a meaningful dot product with at 4.

The Gram matrix is

Gram =

sym * >:< 1
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What determines the sign of the curvature?
The holonomies do it directly, through Gram.

detGram >0 spherical geometry
detGram < 0 hyperbolic geometry

Consider a flat
(Euclidean) tetrahedron

\ /
Its four vectors are

linearly dependent
det Gram =0.

The general claim follows from a special case and continuity in the curvature.

There is no need for another group.
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& Finally we introduce a spin lift,

O¢ — Hg, Hg e SU(2)

Conjecture: There exists a convex constant curvature polyedron with N faces
whenever (HMH, Freidel & Livine, Speziale)

Hy---Hi=1, HeeSu(2)

Focused here on 3D; same techniques allow reconstruction of the 4-simplex.

The G 41 tell us how to assemble the tetrahedra. In fact, there is a sense in
which H and G are conjugate (like Fenchel-Nielsen coords).

Turn to 3D again to explore simplest phase space structures.
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Transverse holonomies are, like standard fluxes, phase space variables

SU(2)
Each holonomy acts like a curved vector;

really a geodesic segment from 1 to the
group element.

~ SU(2) plays nice role: H = e

SU(2)

The conjugacy class of an holonomy
sweeps out a 2-sphere in SU(2) = S3. v

This 2-sphere is symplectic, an orbit of the dressing action of a quasi Poisson-Lie
group (~ g-def.) — can use symplectic tools!
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Like the flat case, we can construct a phase space of shapes

Form product of 4 fixed conjugacy class spheres (fixed areas of tet faces)
and symplectically reduce by overall rotations

Phase p

Distinct polyhedra (intertwiners for quantum theory with cosmological const.)
correspond to different shapes of a spherical polygon

B Immediately conclude the volume of curved tetrahedra quantized
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L

SL(2,C) Chermn-Simons theory is a tool for C?\

4 : A
substituting BF theory with BF-#=BB and / N
leads to a quantized cosmological constant NN\

Can reconstruct curved geometries
in 3 and 4D from the resulting egs of motion

e Phase space and quantized curved geometries

Connect Chern-Simons theory

and the cosmological constant in 4D /\

¢ clarifies the role and origin of quantum groups
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