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Motivations

The cosmological constant is non-zero: ⇤= 2.90⇥10

-122 `-2
P

Why quantum groups in 4D?
Seek a (possibly more general) constructive route

We are lead to couple Loop Quantum Gravity to Chern-Simons theory,
the result has strong relations with previous Hamiltonian studies

A more geometric language that casts light on the asymptotics
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What do we gain?

We enlarge the usual framework,
taking tools from Chern-Simons theory into spinfoams

We develop a new description of
curved simplices in 3 and 4d,
where holonomies also encode fluxes

We obtain both ⇤7 0,
the sign being determined dynamically
at the semiclassical level

We find that ⇤ must be quantized
⇤
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Main results from the asymptotics

Disclaimer: for now the construction is at the single 4-simplex level only

The equations of motion define non-perturbatively curved 4-simplices,
of positive and negative curvature

The Regge action for curved 4-simplices augmented by the cosmological term
is recovered exactly [work in progress on an extra term that we seem to obtain]

SRegge =
X

triangles

at⇥t-⇤V4
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Plan of the talk

1. Construction and definition of the model ⇤EPRL

2. The equations of motions (EoM)

3. Focus on 3d curved geometries, and their reconstruction from the EoM

4. Towards a deformed phase space for curved quantum geometries
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EPRL philosophy

Regge’s philosophy:
construct a manifold out of flat building blocks + (d-2)-dimensional defects

At the quantum level,
flatness is implemented via BF dynamics in the bulk of building blocks, while
defects are created by using only geometric boundary states
[thus breaking BF symmetries]

GR = BF + geometricity constraints
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EPRL mathematics

At the level of a single building block,
the EPRL amplitude of the 3d spin-network boundary state  � is

ZEPRL( � ) :=

Z
DBDA e

i
2`2P

R
B^F[A] �

f� �

�
(G[A]) =

�
f� �

�
(1)

�

S3

*[drawing is in one dimension less]

dual to 4-simplex boundary

SL(2,C)
spin connection

B is the ’bivector’ field
[B= ?e^e on geometric states]

f� is the Dupuis-Livine map,
it embeds  into spacetime

holonomy
of A
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⇤EPRL philosophy

⇤Regge’s philosophy:
construct a manifold out of homogeneously curved building blocks +
(d-2)-dimensional defects [Bahr & Dittrich]

At the quantum level,
the homogenous curvature is implemented via BF- ⇤

6 BB dynamics, and
defects are created as in the flat case

⇤-GR = BF- ⇤
6 BB + geometricity constraints
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⇤EPRL mathematics

Z( � ) :=

Z
DBDA e

i
2`2P

R
B^F[A]-⇤

6 B^B �
f� �

�
(G[A])

=

Z
DA e

3i
4⇤`2P

R
F[A]^F[A] �

f� �

�
(G[A])

=

Z
DA e

3⇡i
⇤`2P

CS[A] �
f� �

�
(G[A])

where the Chern-Simons functional is

CS[A] :=
1

4⇡

I

S3
dA^A+

2

3

A^A^A

For boundary connection functionals,
⇤BF in the bulk is equivalent to CS on the boundary

[Baez]
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The ⇤EPRL 4-simplex amplitude

Twisting the previous construction by using the �-Holst action finally gives

Z⇤EPRL( � ) :=

Z
DADA e

ih2 CS[A]+ih2 CS[A]
�
f� �

�
(G[A,A])

where (A,A) are the self- and antiself-dual parts of A

h := 12⇡
⇤`2P

⇣
1
� + i

⌘
is the complex CS level

Remark

Z⇤EPRL involves only quantities living on the boundary of the building block

⇤EPRL = SL(2,C)-CS evaluation of a specific Wilson graph operator
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Two immediate consequences

h := 12⇡
⇤`2P

⇣
1
� + i

⌘

The CS level h is complex, hence there is
no (known) quantum group structure associate to the graph evaluation
[Fairbairn & Meusburger, Han]

Invariance of the amplitude under large gauge transformation A 7!Ag

implies <(h) 2 Z, i.e.
12⇡

|⇤|
⌘ 4⇡R2

⇤ 2 �`2PN

[Kodama, Randono, Smolin, Wieland]
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Three interesting limits

h := 12⇡
⇤`2P

⇣
1
� + i

⌘

Vanishing cosmological constant ⇤! 0:
h!1, thus CS is projected onto its classical solutions flat EPRL

q-deformed Lorentzian Barrett-Crane amplitude:
when �!1, the EPRL graph operator goes into Barrett-Crane’s,
while h becomes 2 iR, giving q= exp

�
-`2P/R

2
⇤

�

[Noui & Roche]

Semiclassical ⇤Regge limit: more about this in a second
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The semiclassical ⇤Regge limit

`P! 0, j!1, with aphys ⌘ �`2Pj= cnst

`P! 0 means h!1, which corresponds to CS classical flat limit,

however

j!1 makes the Wilson graph operator stand out and
act as a distributional source for (A,A),

thus avoiding flatness

Semiclassical limit = study of flat connections on the graph complement S3 \ �
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The graph complement S3 \ �

� is the graph dual to the 4-simplex boundary

� ⇢ S3

�

tubular
neighborhood

of �

Zoom

It is obtained by removing a tubular neighborhood of � from S3

Its boundary is a genus 6 surface
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Framing of the graph

There are two types of holonomies in S3 \ � :

I transverse Hb(a)

I longitudinal Gba

where a,b, . . . label the graph vertices

We need to specify the exact paths
This is called a choice of framing for �

Hb(a)
basapoint
at vertex a

Zoom on vertex a

Gba

longitudinal paths
run on the

‘top’ of the tubes
‘Top view’ of the

tubular neighborhood

1
2 3

4
5
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Equations of motion

The connection on the graph complement is flat, hence
holonomies along contractible paths are trivial:

closures
 �Q

bHb(a) = 1

parallel transports
GbaHb(a)Gab =Ha(b)-1

around 5 out of the 6 independent ‘faces’
GacGcbGba = 1

while, around the last independent ‘face’:
G34G42G23 =H1(3)

a

1
2 3

4
5

a b
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These equations of motion are
enough to reconstruct the full
4D geometry of the 4-simplex.

The reconstruction is more transparent
in 3D will show you this with
emphasis on the connections to 4D
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A spherical tetrahedron is 4 points of S3 connected by geodesics

Each face is a triangular
portion of a great 2-sphere

⌥ Great spheres are flatly embedded in S3 (i.e. Kij = 0)

The normal to a face is well-defined
and invariant under parallel transport
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The holonomy around a curved triangle is equal to the area of the triangle
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The holonomy around a curved triangle is equal to the area of the triangle

Parallel transport of the tangent
vector is easy
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The holonomy around a curved triangle is equal to the area of the triangle

Pick up the next tangent vector

and introduce the complement

¯�= ⇡-�

This angle is preserved under
transport
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The holonomy around a curved triangle is equal to the area of the triangle

Repeat

¯�= ⇡-�

¯�= ⇡-�
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The holonomy around a curved triangle is equal to the area of the triangle

¯↵= ⇡-↵

¯�= ⇡-�

¯�= ⇡-�

The full holonomy is a
counterclockwise rotation about
the normal with angle

a= 2⇡- ¯↵- ¯�- ¯�

= ↵+�+�-⇡,

the area of the spherical triangle!
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We have converted flux variables to ‘transverse’ holonomies

Our calculation shows that the
holonomy can be cast as:

O= exp

⇣ a

R2 ˆn ·~J
⌘
, O 2 SO(3)

[Sahlmann, Dittrich & Geiller]

Idea: the closure relation should be replaced by the automatic homotopy
constraint [Bonzom, Charles, Dupuis, Girelli, Livine]

O4O3O2O1 = 1

This is the SO(3) version of our eqn of motion, slide 15. For R!1

O4O3O2O1 = 1+R-2(a1ˆn1+a2ˆn2+a3ˆn3+a4ˆn4) ·~J+ · · ·= 1
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How do you access the global geometry? We use ‘simple’ paths.

O1 O2 O3 O4

This particular choice appears arbitrary, but from the 4D perspective it is not.

Requiring that the faces of � only
intersect along its edges...

...and using the framing discussed
above uniquely fixes the paths.
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The simple paths determine a geometrically meaningful curved Gram matrix.

The geometrical dot product ˆn1 · ˆn3 is well defined at vertex 4,
but we have to rotate ˆn4 to give a meaningful dot product with ˆn2 at 4.

The Gram matrix is

Gram=

0

BB@

1

ˆn1 · ˆn2 ˆn1 · ˆn3 ˆn1 · ˆn4
⇤ 1

ˆn2 · ˆn3 ˆn2 ·O1ˆn4
⇤ ⇤ 1

ˆn3 · ˆn4
sym ⇤ ⇤ 1

1

CCA ;

it is obtained by tracing, hO`OmiC = 1
2Tr(O`Om)- 1

4Tr(O`)Tr(Om),

ˆn` · ˆnm =
hO`OmiCp

1- hO`i2
p

1- hOmi2
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What determines the sign of the curvature?
The holonomies do it directly, through Gram.

�
detGram> 0 spherical geometry

detGram< 0 hyperbolic geometry

Consider a flat
(Euclidean) tetrahedron

Its four vectors are
linearly dependent
 detGram= 0.

The general claim follows from a special case and continuity in the curvature.

There is no need for another group.
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| Finally we introduce a spin lift,

O` �!H`, H` 2 SU(2)

Result:

a full constructive proof of the Minkowski theorem for curved tetrahedra

Conjecture: There exists a convex constant curvature polyedron with N faces
whenever [HMH, Freidel & Livine, Speziale]

HN · · ·H1 = 1, H` 2 SU(2)

Focused here on 3D; same techniques allow reconstruction of the 4-simplex.

The Gab tell us how to assemble the tetrahedra. In fact, there is a sense in
which H and G are conjugate (like Fenchel-Nielsen coords).

Turn to 3D again to explore simplest phase space structures.
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Transverse holonomies are, like standard fluxes, phase space variables

Each holonomy acts like a curved vector;
really a geodesic segment from 1 to the
group element.

 SU(2) plays nice role: H= e-i a2 n̂·~�

The conjugacy class of an holonomy
sweeps out a 2-sphere inSU(2) ⇠= S3.

This 2-sphere is symplectic, an orbit of the dressing action of a quasi Poisson-Lie
group (⇠ q-def.) =) can use symplectic tools!

[Amelino-Camelia, Freidel, Kowalsky-Glikman, Smolin]
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Like the flat case, we can construct a phase space of shapes

Form product of 4 fixed conjugacy class spheres (fixed areas of tet faces)
and symplectically reduce by overall rotations [Ditrrich & Bahr, Treloar]

Distinct polyhedra (intertwiners for quantum theory with cosmological const.)
correspond to different shapes of a spherical polygon

⌅ Immediately conclude the volume of curved tetrahedra quantized
[HMH & Bianchi]
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Conclusions

SL(2,C) Chern-Simons theory is a tool for
substituting BF theory with BF-⇤6 BB and
leads to a quantized cosmological constant

Can reconstruct curved geometries
in 3 and 4D from the resulting eqs of motion

• Phase space and quantized curved geometries

Connect Chern-Simons theory
and the cosmological constant in 4D

⌥ clarifies the role and origin of quantum groups
⇤


