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The polyhedral picture is important for understanding loop gravity

• crucial to the dynamics of spin foams

• for fixed-graph Hilbert space the
semiclassical limit is a collection of
flat polyhedra

&
their extrinsic geometry is encoded
in the Ashtekar-Barbero holonomy

• generalizes Regge calculus: tetrahedra  polyhedra,
& discontinuity is allowed; ∃ shape mismatch in the general case

Many interesting directions to explore...
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Bianchi, Doná, and Speziale
numerical reconstruction ’11

HMH, Han, Kamiński, Riello curved
tetrahedron reconstruction ’16

O4O3O2O1 = 1l, Oi ∈ SO(3) ⇐⇒

Bianchi and HMH Bohr-Sommerfeld
tetrahedral volume spectrum ’11
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Beautiful connection with quantum groups, Λ, and CS theory,
maybe important for renormalization [Dittrich]

Projective perspective may be key to proving a generalized
Minkowski theorem for curved polyhedra [Dupuis, Girelli, Livine, HHKR]

Volumes from fluxes:
Lasserre’s algorithm allows reconstruction of polyhedra (adjacency,
edge lengths, volume) from the normals and heights wrt a ref pt;

Bianchi-Doná-Speziale: heights can be inverted for the areas
numerically, to complete the reconstruction from the fluxes:

Ai(h, n) =
F∑

j,k=1
M jk
i (n1, . . . , nF )hjhk

Can we do better, and have an analytic reconstruction procedure?
Our central observation: adjacency is projective
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Outline

I. Classical Results in Projective Geometry

II. Analytic Polyhedral Adjacency

III. Projective Varieties and Spaces
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Projective geometry uses only a straightedge in constructions

Girard Desargues’ founding
work will be important to us

Detail from Raphael’s fresco
with Euclid using a compass

The heart of theorems is thus about incidence:
points lying on lines and lines intersecting in points
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All pairs of lines in a projective plane meet in a point;
sometimes a point at infinity

Harold and the Purple Crayon

The line of points at infinity
we call the horizon

A special circumstance:
three lines incident on a point
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Two triangles in the plain are perspective from a point if...

Two triangles
pt of

perspectivity

Two triangles perspective
from a point

...∃ a pairing of vertices s.t. lines through the pairs are incident.
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Desargues’ Theorem: Two triangles perspective from a point are
also perspective from a line.

(See animation)
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The fundamental projective invariant is the cross ratio

ρ = (x1 − x3)(x2 − x4)
(x2 − x3)(x1 − x4)

Using triangle
areas, can prove

ρ = sin(x1Px3) sin(x2Px4)
sin(x2Px3) sin(x1Px4)

The latter implies immediately that ρ = ρ′. Convenient to write

ρ = (x1, x2;x3, x4) P= (x′1, x′2;x′3, x′4)
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Proof of Desargues’ theorem using cross ratios
Let U = BA ∩ Y X etc.

(W,V ;Q,BA ∩WV ) B= (W,C;N,A)
P= (W,Z;M,X) Y= (W,V ;Q,Y X ∩WV )
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[Brief aside...

Some permutations of the four points change the cross ratio

(x1, x2;x3, x4) = ρ (x1, x2;x4, x3) = 1
ρ

(x1, x3;x4, x2) = 1
1− ρ (x1, x3;x2, x4) = 1− ρ

(x1, x4;x3, x2) = ρ

ρ− 1 (x1, x4;x2, x3) = ρ− 1
ρ

These permutations form a group called the anharmonic group
—the other permutations leave it invariant

...]
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For some time no synthetic, constructive proof was known...

...brings us back to our story and loop gravity
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I. Classical Results in Projective Geometry

II. Analytic Polyhedral Adjacency

III. Projective Varieties and Spaces
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Minkowski’s theorem: The areas Al and the unit-normals ~nl to
the faces of a convex polyhedron fully characterize its shape. Let
~Al = Al~nl, then the space of shapes of polyhedra with F faces of
given areas Al is

SKM =
{
~Al, l = 1 . . F |

∑
l

~Al = 0 , ‖ ~Al‖ = Al
}
/ISO(3)

~A1 + · · ·+ ~An = 0←→

Existence and uniqueness thm nothing to say about construction
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A pentahedron can be completed to a tetrahedron

Define α as the ratio of the tetrahedron’s first face area, A1tet, to
the pentahedron’s first face area A1, i.e.

A1tet = αA1

and similarly for β and γ
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A pentahedron can be completed to a tetrahedron

α, β, γ > 1 found from,

α ~A1 + β ~A2 + γ ~A3 + ~A4 = 0

e.g. =⇒ α = − ~A4 · ( ~A2 × ~A3)/ ~A1 · ( ~A2 × ~A3)
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Let Wijk = ~Ai · ( ~Aj × ~Ak). Different closures imply,

Case 1: 54-pentahedron
α1 ~A1 + β1 ~A2 + γ1 ~A3 + ~A4 = 0,

γ1 = −W124
W123

Case 2: 53-pentahedron
α2 ~A1 + β2 ~A2 + ~A3 + γ2 ~A4 = 0,

γ2 = −W123
W124

= 1
γ1

Require α, β, γ > 1: These cases are mutually incompatible!
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A representative sample of the 20 cases:

1. α1 ≡ α β1 ≡ β γ1 ≡ γ
2. α2 = α

γ β2 = β
γ γ2 = 1

γ

3. α3 = α
β β3 = γ

β γ3 = 1
β

4. α4 = β
α β4 = γ

α γ4 = 1
α

5. α5 = 1− α β5 = 1− β γ5 = 1− γ
6. α6 = 1−α

1−γ β6 = 1−β
1−γ γ6 = 1

1−γ

7. α7 = 1−α
1−β β7 = 1−γ

1−β γ7 = 1
1−β

8. α8 = 1−β
1−α β8 = 1−γ

1−α γ8 = 1
1−α

9. α9 = γ−α
γ β9 = γ−β

γ γ9 = γ−1
γ

10. α10 = γ−α
γ−1 β10 = γ−β

γ−1 γ10 = γ
γ−1

11. ... 20.

N.B. anharmonic group appears for γ in cases 1, 2, 5, 6, 9, & 10
[For defs of cases see arXiv:1211.7311]
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Requiring: β > α > γ > 1 and γ ≥ αβ/(α+ β − 1)
guarantees that the 54 pentahedron is constructible
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Closely related to a synthetic proof of Desargues’ theorem

Corresponding to every pentahedron is a unique Desargues
configuration up to projective transformations
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Desargues configurations are quite symmetrical—every pt of the
config is a pt of perspectivity for a pair of triangles in the config

Coxeter’s Theorem: The moduli space of Desargues
configurations is captured by five parameters λα such that

λ1 + λ2 + λ3 + λ4 + λ5 = 0, λ1λ2λ3λ4λ5 6= 0

with all 20 cross ratios of the configuration given by ραβ = −λα
λβ

21



A small gap in pentahedral adjacency ↔ Desargues remains

Certainly we can take

λ1 = W234, λ2 = −W134, λ3 = W124, λ4 = W123,
and λ5 = −

∑4
α=1 λα

and we will have a Desargues configuration with the same cross
ratios as in the 54-pentahedral construction...

...but, we have not yet succeeded in proving that this is the
Desargues config resulting upon projection of the pentahedron

We expect a clear correspondence and are working to close this gap
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What about polyhedra with more faces?

Two dominant hexahedral classes: cuboids and pentagonal wedges

Can draw several lessons from the pentahedral case:
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Cuboids occupy isolated islands surrounded by pentagonal wedges

cuboid adj = 5!! = 15 and pent wedge adj =
(6

2
)(4

2
)
· 2 = 15 · 12

Scaling procedures from the pentahedral work of ’13 apply, but
also there is a projective configuration, the Steiner-Plücker config
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But how general is this really? We do not know yet, but...

Collect the F area vectors ~Ai into a 3× F matrix

A =

 | · · · |
~A1 · · · ~AF
| · · · |


Weyl’s Theorem: Every projectively invariant polynomial of the
components of A can be expressed as a polynomial in the 3× 3
sub-determinants of A.

Lasserre’s algorithm is not polynomial in the components of the
area vectors—our approach is in the case of pentahedra

Motivates looking for a general argument that adjacency is
polynomial in the area vector components  look closely at Wijk
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Connections with projective geometry were already highlighted in
nice papers by Freidel, Krasnov, & Livine; [e.g. 1005.2090]

Using spinors they showed explicitly the isomorphism:

Fixed total area
Fixed total phase Spinor’s norms: areas

Spinor’s phases: a framing of each face (related to extrinsic geometry    ) 

A projective variety: embedded in 
via spinor bilinears

and Plücker relations 

Questions:
What is the precise relation btwn the complex Grassmannian
projectivity and the real projectivity of the adjacencies?
Can we analytically reconstruct the adjacency using projective
geometry, either the complex one of the F ’s, or the real one
of the Wijk’s?
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Can the Wijk be taken as coordinates for the space of shapes?

Consider pentahedral case for proof of principle test:

Some notation
~Aij = ~Aji = ~Ai + ~Aj ,

Wijk = ~Ai · [ ~Aj × ~Ak],
~Bij = ~Ai × ~Aj , ~B(kl)(ij) = ~Akl × ~Aij

Then
Wijk = ~Bij · ~B(kl)(ij)

( ~Akl· ~Ak)
A2

kl

sin θij

Aij
+
~Bij ·~Bkl

Akl
[cos θij sin θkl+

~Aij · ~Akl

AijAkl
sin θij cos θkl]
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Could be just good luck; already for hexahedra there are 6 KM
variables, but 10 W ’s (after using closure)—seems hopeless...

But, in R3 there must be linear dependencies amongst 4 or more
vectors, e.g.

∑4
i=1 ai

~Ai = 0, solve for ai to find

W234 ~A1 −W134 ~A2 +W124 ~A3 −W123 ~A4 = 0

and dot in { ~A1 × ~A5, ~A2 × ~A5, ~A3 × ~A5} to get

W134W125 −W124W135 +W123W145 = 0
W234W125 −W124W235 +W123W245 = 0
W234W135 −W134W235 +W123W345 = 0

These are quadratic Plücker relations amongst the W ’s and...
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...now the counting works. Simpler to use wijk = Wijk/AiAjAk

In fact, the Plückers of the W ’s and the F ′s are exactly the same

Wijk = i
4FijEikF̄jk + c.c.

Fij = z0
i z

1
j − z0

j z
1
i = [zi|zj〉

Eij = z̄0
i z

0
j + z̄1

i z
1
j = 〈zi|zj〉

WijkWilm −WilkWijm +WiljWikm = 0↔ FijFkl − FikFjl + FilFjk = 0

Plücker relations amongst the complex variables also follow directly
from the spinorial identity
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In conclusion

The face adjacency of a pentahedron is completely determined by
cross ratios that can unusually be expressed as the ratio of just two
numbers, e.g. α = −W124/W123

Indeed pentahedral adjacency is likely completely determined by a
Desargues’ configuration and projective configurations are also
important to hexahedral geometry

We have provided a new set of real projective tools with rich
connections to the geometry of polyhedra and exposed a
computational foundation for the motto adjacency is projective
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