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Questions

What do we learn from the thermality of event horizons?

Is horizon thermality local? Is there a quantum version of the
equivalence principle?

How does entanglement speak with gravity and the boundary
formalism?
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Structure of the general boundary formalism

Fundamental ingredients: 1) Decomposition: Oeckl [1,2,3]

Hilbert space B of
∂R decomposes:
B = H1 ⊗H2

2) Gluing: glue two manifolds along boundary, amplitudes add

Think of path integrals over regions. Rigorous in context of TQFT.
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http://arxiv.org/abs/hep-th/0306025
http://arxiv.org/abs/hep-th/0509122
http://arxiv.org/abs/1212.5571


The Kubo-Martin-Schwinger condition

The KMS condition is standard for identifying thermality.

For a statistical state ρ and observable A

〈A〉 = Tr[Aρ],

the correlation of A and B is

〈AB〉 = Tr[ABρ],

and the time-dependent correlation is

〈A(t)B(0)〉 = Tr[eiHtAe−iHtBρ].

Then the KMS condition is

〈A(t)B(0)〉 = 〈B(0)A(t + iβ)〉,

with β the inverse temperature.
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Minkowski vacuum for wedge boundary?

What is the vacuum state in a Rindler wedge? (work w/ E. Bianchi)

The amplitude is:
WΣ[ϕ] = Wη[ϕ1, ϕ2].

Idea: Vacuum should be the
path integral over the
exterior of the wedge.

Boost through the light cone
by analytically continuing:
� pick up i π2 on each
crossing of the light cone.

Builds on the ideas of Unruh and Weiss [4].
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http://link.aps.org/doi/10.1103/PhysRevD.29.1656


Wedge vacuum

Wedge amplitude Wη[ϕ1, ϕ2]; conjecture Ψ0
η = W−η+2πi [ϕ1, ϕ2].

To check it, do path integral for
free scalar field:

〈ϕ1(x)ϕ2(x)〉η =
∫
DϕΨ0

ηϕ1ϕ2Wη∫
DϕΨ0

ηWη
.

For insertions along accelerated
trajectory

G(τ) = 〈ϕ1(x)ϕ2(x)〉η=aτ

∼ 1
sinh2 ( η

2 ) = 1
sinh2 ( aτ

2 )

The Unruh effect: G(τ) = G(τ + 2π
a i), a thermal correlation.
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Entanglement and the vacuum

The boundary formalism provides a new intepretation of the
thermality of the Rindler dynamics.

QFT: vacuum state factorizes

Ψ0
t [Φ1,Φ2] = ψ0[Φ1]ψ0[Φ2]

Vacuum state Rindler wedge:

Ψ0
η[ϕ1, ϕ2] 6= f (ϕ1)g(ϕ2)

Minkowski vacuum has
entanglement between initial
and final Rindler times
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Results

♣ The Minkowski vacuum in the Rindler wedge can be described
by Ψ0

η[ϕ1, ϕ2] 6= f (ϕ1)g(ϕ2).
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Rindler horizons

In the near horizon limit all black hole horizons look like the
Rindler horizon. (e.g. Jacobson & Parentani [5])

Analogs of black hole results can be derived for Rindler, e.g.:
• ∆AH = 8πG

κ ∆Q Bianch & Satz [6]

• ∆Sgen ≥ 0 Wall [7,8]

• ∆Sent = ∆AH
4G Bianch [9]

For example, the last work provides new resolutions to:
1) Entanglement entropy of Rindler horizon divergent,
2) tuning of high energy cutoff Λ, 3) species problem.

These works all use the tools of perturbative quantum field theory
and provide an accessible treatment of quantum Rindler horizons.
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http://arxiv.org/abs/gr-qc/0302099
http://arxiv.org/abs/1305.4986
http://arxiv.org/abs/1007.1493
http://arxiv.org/abs/1105.3445
http://arxiv.org/abs/1211.0522


Quantum equivalence principle

The above references suggest and support a quantum version of
the equivalence principle.

Near a corner a finite spacetime region looks like Rindler

Specific realization: assume that near corners physics is locally
Lorentz invariant.
♣ Below we investigate the consequences of this assumption

for non-perturbative, general-boundary gravity.
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Non-relativistic formalism

With Ht ' H, define the boundary Hilbert space Bt = H0 ⊗H∗t .

Mechanics

Two notable structures:

Wt(ψ ⊗ φ∗) := 〈φ|e−iHt |ψ〉,
and extend by linearity.

σ : ψ 7→ ψ ⊗ (e−iHtψ)∗.
Ψ = σ(ψ) satisfy Wt(Ψ) = 1,
call ’em “physical boundary
states”.

Stat. Mech.

Statistical state
ρ =

∑
n cn |n〉 ⊗ 〈n| ∈ B0,

s.t.
∑

n cn = 1.

Corresponding element of Bt ,
ρt =

∑
n cn |n〉〈n|eiHt

and it is physical, Wt(ρt) = 1.
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Non-relativistic formalism II

Which are the solutions of the physical state condition 〈Wt |Ψ〉?

Can show,

〈Wt |Ψ〉 =
∑

nn′ cnn′〈n′|eiHte−iHt |n〉 =
∑

n cnn = 1,

the trace class condition and so:

� They are the pure and statistical states from previous slide.

Notice that Ψ ∈ Bt is not generally normalized, instead

|Ψ|2 =
∑

nn′ |cnn′ |2 ≤ 1,

with equality if Ψ is a pure state.
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Relativistic formalism

Parallel structure: main idea is to include the time in the boundary
state. K is Hilbert space of (generalized) states ψ(x, t).

The boundary Hilbert space is B = K ⊗K∗ (no t label needed).
Mechanics

Two notable structures:

W (ψ ⊗ φ∗) := 〈φ|P|ψ〉,
and extend by linearity.
In a Schrödinger basis
W (x, t, x ′, t ′) = 〈x ′, t ′|P|x, t〉

= 〈x ′|ei(t−t′)H |x〉.

σ : ψ 7→ ψ ⊗ ψ∗.
Image(σ): W (Ψ) = 1.

Stat. Mech.

ψn soln t-dep Schrödinger eq
ρ =

∑
n cnψnψ

∗
n ,

s.t.
∑

n cn = 1.

E.g.,
ρ(x, t, x ′, t ′) =∑

n cn ψn(x, t) ψn(x ′, t ′).
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Quantum Gravity

Finite regions: the quantum equivalence principle & Unruh effect

 all local boundary states are mixed. But B can be made
bipartite in many different manners, so better to say non-separable.

Local gravitational states are always entangled states

Remarkably, the complete absence of physical pure states means
that there is no distinction between quantum and statistical
fluctuations in quantum gravity. (see also Smolin [10, 11])
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http://dx.doi.org/10.1088/0264-9381/3/3/009
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Results

♣ The Minkowski vacuum in the Rindler wedge can be described
by Ψ0

η[ϕ1, ϕ2] 6= f (ϕ1)g(ϕ2).

� In quantum gravity finite spacetime regions are the describable
physical processes.
These regions are always entangled  there is no fundamental
distinction between statistical and quantum fluctuations.
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Spherical causal domain

Results leading us to reconsider
the Cauchy development of
spherical regions:

• Foliation leads to repacking
of the Rindler trajectories

• Thermal properties subtle:
detectors thermalize but region
is not in equilibrium

• m = 0: Spherical entangling
surface  |0〉 ∼ e−πCin ,
Sorkin-Johnston vacuum [12, 13,
14] in these regions?

Figure: 2+1 spacetime cutaway
visualization of spherical causal
domain and hyperbolic foliation
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Results

♣ The Minkowski vacuum in the Rindler wedge can be described
by Ψ0

η[ϕ1, ϕ2] 6= f (ϕ1)g(ϕ2).

� In quantum gravity finite spacetime regions are the describable
physical processes.
These regions are always entangled  there is no fundamental
distinction between statistical and quantum fluctuations.

♠ Revealing new ideas about finite spacetime regions: thermality,
vacua, and horizon entanglement
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