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Finite region quantum gravity

What is the physics of a finite region of a quantum spacetime?

Finite regions can incorporate diffeos of GR into a quantum
context ~~ avoid notorious difficulties, e.g. [Arkani-Hamed et al].


http://arxiv.org/abs/0704.1814

Entanglement thermality

Entanglement leads to even finite regions of spacetime being hot.

We illustrate this claim with a spherical entangling surface.



Entanglement insights

Casini, Huerta & Myers have extensively studied the entanglement
entropy of spherical causal domains. [Casini, Huerta & Myers '11]

Bianchi has been shedding interesting light on black holes through
entanglement. [Bianchi 1-'12, 2-'12]

Disappearance of distinction between statistical and quantum
fluctuations. [Bianchi, HMH, Rovelli '13]

¢ Focus on QFT while aiming for spin networks and loop gravity.


http://arxiv.org/abs/1102.0440
http://arxiv.org/abs/1204.5122
http://arxiv.org/abs/1211.0522
http://arxiv.org/abs/1306.5206

Introduction to loop gravity and the discreteness of space
What kind of entanglement?
Where (and when) is the region?

Why the entanglement spectrum?



Loop Quantum Gravity

Briefly construct Hilbert space of loop gravity:
H.

Similarities to Fock space of QED
and to lattice gauge theory (e.g. QCD).
Built on graphs:

t(£) L “links” ¢
i N “nodes” n
s(f) source and target:

sl s(f)and t: 0 t(0)

Graph T’



Massive scalar field:
m One particle: Hy = L?(M), M the Lorentz hyperboloid.
® n particles,
Ho = L*(M™)/ ~
with ~ permutations. Factorization symmetrizes states.

m All states up to N particles

Fock space



Lattice Gauge Theory

Lattice I with L links ¢, N nodes n and gauge group G

Hr = L2(Gh).

States ¥(hy) € Hr acted on by gauge transformations

Y(he) — Y(gye) he 9[(4})), gn € G.

Gauge invariant Hilbert space is

Hr = L*(GF/GY).



Loop Quantum Gravity

General graph I', called a spin network,
Hr = L2(SU©2)P/5U2)N),
an SU(2) lattice gauge theory.

If T" < T then Hy C Hr.
4 <

Hr = Hr/ ~
H = lim Hrp

I'—oo
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Physical Picture

Quanta of gravity are “grains” or “chunks” of space
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Volume

Polyhedral Volume: [Bianchi, Don4 and Speziale]

Vpol = The volume of a quantum polyhedron

Semiclassicall

%)
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http://arxiv.org/abs/1009.3402

Minkowski's theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

A4+ 4,=0.
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Minkowski's theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

A4+ 4,=0.

Minkowski
>
reconstruction

Only an existence and uniqueness theorem.
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Minkowski's theorem: a tetrahdedron

Interpret the area vectors of tetrahedron as angular momenta:

For fixed areas A1, ..., A4 each area vector lives in 52.

Symplectic reduction of (S52)* gives rise to the Poisson brackets:

{frg) = Z <6Al ag)

04,
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Minkowski's theorem: a tetrahdedron

For fixed areas Ay,..., Ay

p

==

p= |ﬁ1 + 212| q = Angle of rotation generated by p:
{a.p} =1
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Take as Hamiltonian the Volume:

Area of orbits given in terms of complete elliptic integrals,

J(E) = (ﬁ: a; K (m) + 24: bill(a?, m)> E
i=1 i=1
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http://arxiv.org/abs/1102.5439

Table

J1 j2 J3 ja Loop gravity Bohr- Accuracy
Sommerfeld
1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
6667 5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%
1.828 1.795 1.8%
3.204 3.162 1.3%
11 13 13 13 4.225 4.190 0.8%
2020202 5.133 5.105 0.5%
5.989 5.967 0.4%

6.817 6.799 0.3%




Outstanding challenge

How to identify the ground state of a general relativistic theory?

Want to coordinate individual grains of space to recover
Minkowski space from this quantum theory.

¢ Use entanglement
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What kind of entanglement?
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Boundary conditions for the remainder

For simplicity | restrict to:

Scalar field ¢(z),
with m =0
on flat D = 3 + 1 spacetime

unless otherwise stated. Metric signature (—, +, +, +).

¢ Results apply to any conformal field theory.
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Entanglement

Pure state |¥) € Hy @ Hp.  A] B |

Ha @ Hp

Schmidt decomposition:
T) =D Ailia) ® |ip)
i
with |i4) and |ig) orthonormal bases in H 4 and Hp respectively.

Leads to the reduced density matrix
pp = Tra|W)(¥|
=Y Mlig)(is|
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Entanglement entropy

Sgp = —Trpglogpp = —Z)\% log)\%

For example,
SR
U) = —lia) ® |1
= Sp=logD
B Interested in bipartite entanglement of pure states.

But, Sg is a single number ~~ encodes limited information...
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Entanglement spectrum

Can always write
pB = e_HE, ie. Hp=-logpp,

the “entanglement Hamiltonian".
Already diagonalized Hp:

pp = e “ip)(ip|
7

with ; (i =1,2,...) [\2 = ¢7%] the “entanglement spectrum”.
[Li & Haldane '08]

Provides thorough understanding of entanglement.
¢ Study for spacetime fields.
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Where (and when) is the region?
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Spherical causal domain

Cauchy development of 3-ball with boundary 2-sphere of radius R:

Spatial 3-ball B ~~ Cauchy
development D(B).

Entangling surface the
boundary 2-sphere 0B = 52,

Choose adapted coordinates
that preserve S2: similar to
how polar coords fix (0,0)...

d) T,
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Diamond coordinates

Use hyperbolas

Diamond coords (), 0,6, ¢):

B sh A
" “chA+cho oI
sho
T = _—
chA+cho
with A € (—o0, ), 0 € [0, 00).

The Minkowski metric becomes

R2
ds? = ——— [~ d\? + do? + sh?0d©?],
S = oy N Fdo Fshiod(Y]
a conformal rescaling of static Kk = —1 FRW.
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Conformal completion

Diamond coordinates can be extended to all of Minkowski space

E.g. region Il @
I+
sh A @@

SN\\ZEN[/
! NN
N2
oA
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Rindler Limit

Large o limit:

t =2Re “sh A =/{sh\ 0
R—r=2Re “chA=/{chA

coord transformation to (left)
Rindler wedge.

The proper distance from right corner is { = 2Re™ 7.
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Congruence &+ = (a%)u with current JH = THYE,,

0
Vot = (VL PE, + TRV .6 = TV (6,
A ¢Mis a conformal Killing = V,JV = %GT“M (0 =V ,E°).

For dilatation invariant field theory T*, = 0 (on shell) so

and J* is a Nother current.
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Entanglement (or foliation) Hamiltonian

The conserved charge is
C=[T,E"adx

with T, the stress-tensor. It generates the spatial foliation
discussed above:

O

Explicitly this charge is,

o1 2 A (Lip2 22 e S 2
¢ —QR/BrdrdQ<2(R ) (@? + Vo Vo) + ¢2)
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Why the entanglement spectrum?
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Density matrix from Euclidean path integral

Minkowski vacuum: Rindler density matrix:

tg
i

Spherical density matrix:

sin )\E
lp=R——— )
cos A\g + cho | Bipolar
h
r— R sho coords
cosAg +cho
pB = /Dgoe_SE _ e—QﬂCm
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Temperatures

pPB = 6*2“011"/2: thermal density 1) Geometric temperature
matrix satisfying KMS condition.

Tg =5
2) Martinetti-Rovelli temperature ds? — ﬁ[—dkz—l-
_ 1.d\ _ 1 (chifcho) 2 2 _10)2
TMR = 5= = 50—~ do” + sh”od?]

[M & R '02, Wong et al '13]

Thermometer measures T}, £ u".

e The region is not clearly in equilibrium. [Chirco, HMH & Rovelli '13] 35


http://arxiv.org/abs/gr-qc/0212074
http://arxiv.org/abs/1305.3291
http://arxiv.org/abs/1309.0777

Conformal symmetry

Curved spacetime Lagrangian density (D=4 spacetime dimensions)
1 y 1
£ = SV=glg" Qupup + (m? + ZR(2)?)

For g = Q2(2)gu and ¢ = Q(z) "Ly the m = 0 action is
invariant.

With g, = 1,,, the EOM transform as

- 1
Up = Q_g[D - ER](pa
with O = ¢"”V,V,,. Using this, sphere modes are

(ch A+ cho)IT (o) Y (0, p)e ™.
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Sphere vacuum and spherons

Minkowski case: ¢(z) = [ dP~ k[auc(z) + af{uf;(x)]
The vacuum satisfies ax|0) s = 0.

Cut out all in-out entanglement to get sphere vacuum

Sphere case: ¢(z) = E [skuk+5” I*+5U II+5UT H*]
The sphere vacuum satisfies sk\0>s = s |O>S = 0.

| slfr creates spherons, excitations localized within the

spherical entangling surface.
37



Two-point functions

Leveraging conformal symmetry we can achieve a more substantial
characterization of the vacuum, finding its two-point functions:

D—-2 D—-2

DY (z,2")=Q 2 ()D"(z,2)Q 2 ()
e 1+1 spacetime:

1
DV (z,2) = ———log| — AN + Ac?|
4
e 3+1 spacetime:

(chA+cho)Ao(ch XN 4 cho’)
42 R? sh (Aco) [—AN? 4+ Ac?]

D (z,2') =

38



Sorkin-Johnston vacuum

Recently researchers working on causal sets have been investigating
a remarkable state, the Sorkin-Johnston vacuum:

[Johnston '09, Sorkin "11]

~> proposed vacuum for a causal set within a causal diamond. It

m is defined only through referencing the diamond’s interior
m has no entanglement with outside

m and so does not satisfy the Reeh-Schlieder theorem.

Afshordi et al have just investigated the Sorkin-Johnston vacuum
in 2D analytically and numerically... [Afshordi et al '12]

39


http://arxiv.org/abs/0909.0944
http://lanl.arxiv.org/abs/1107.0698v1
http://arxiv.org/abs/1207.7101

Comparison

. and amongst many other things they found a surprise: near the
L and R diamond corners the Sorkin-Johnston two-point function
is that of a static mirror in Minkowski spacetime.

B How does the sphere vacuum compare?
In the limit A\ =\ =0, 0,0’ — oo:
+ 1 ‘ o1
Dyp ~ — 45 log (log 7) Dip 2n(—0?)log 5

The Rindler two-point functions. [Troost & Van Dam '79]
(Recall £ = 2Re™7 is the proper distance from the right corner.)

= the sphere and Sorkin-Johnston vacuums differ in 2D.
Is this still true in 4D?

40


http://dx.doi.org/10.1016/0550-3213(79)90091-9

Entanglement spectrum

Let us return to considering the Minkowski vacuum |0) .

Explicitly constructed the entanglement Hamiltonian ~~ diagonalize
it to recover the entanglement spectrum \; = e/ and

|0>M = Z)\1|7fm>s & |7f'out>S-

This shows that despite the absence of in-out entanglement you
can recover the Minkowski vacuum through a well-tuned
superposition of sphere states.
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Spin network entanglement

This suggests an intriguing perspective on spin networks.

Individual nodes are like the
interior of the sphere with no
entanglement between a
given node and its neighbors.

Can we choreograph entanglement to yield the Minkowski vacuum?

¢ A wealth of condensed matter research on entanglement to draw
from (MPS, PEPs, etc).

42



Conclusions

m Interesting connections to causal sets. What is the nature of
the Sorkin-Johnston vacuum in 4D?

m Exhibited an example outside the hypotheses of the
Reeh-Schlieder theorem.

m Looking to engineer the Minkowski vacuum and its
entanglement from spin network superposition.

Numerous possibilities
e More general entangling surfaces
e Deeper insights from condensed matter

e Anomalies
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Burning orb image: http://www.beautifullife.info/graphic-
design /the-sphere-is-not-enough /

Spherical spin network: Z. Merali, “The origins of space and time,’
Nature News, Aug. 28, 2013

Special thanks to the Cracow School of Theoretical Physics, LIII
Course, 2013 for a lovely school and setting while this work was
begun. And to the Perimeter Institute for their gracious hosting of
visitors and support during the continuation of this work.
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