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Finite region quantum gravity

What is the physics of a finite region of a quantum spacetime?

Finite regions can incorporate diffeos of GR into a quantum
context  avoid notorious difficulties, e.g. [Arkani-Hamed et al].
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http://arxiv.org/abs/0704.1814


Entanglement thermality

Entanglement leads to even finite regions of spacetime being hot.

We illustrate this claim with a spherical entangling surface.
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Entanglement insights

Casini, Huerta & Myers have extensively studied the entanglement
entropy of spherical causal domains. [Casini, Huerta & Myers ’11]

Bianchi has been shedding interesting light on black holes through
entanglement. [Bianchi 1-’12, 2-’12]

Disappearance of distinction between statistical and quantum
fluctuations. [Bianchi, HMH, Rovelli ’13]

� Focus on QFT while aiming for spin networks and loop gravity.
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http://arxiv.org/abs/1102.0440
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Outline

1 Introduction to loop gravity and the discreteness of space

2 What kind of entanglement?

3 Where (and when) is the region?

4 Why the entanglement spectrum?
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Loop Quantum Gravity

Briefly construct Hilbert space of loop gravity:
H.

Similarities to Fock space of QED
and to lattice gauge theory (e.g. QCD).

Built on graphs:

Graph Γ

L “links” `
N “nodes” n

source and target:
s : ` 7→ s(`) and t : ` 7→ t(`)
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Fock Space

Massive scalar field:
One particle: H1 = L2(M ), M the Lorentz hyperboloid.
n particles,

Hn = L2(M n)/ ∼

with ∼ permutations. Factorization symmetrizes states.
All states up to N particles

HN =
N⊕

n=0
Hn .

Fock space
HFock = lim

N→∞
HN .
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Lattice Gauge Theory

Lattice Γ with L links `, N nodes n and gauge group G

H̃Γ = L2(GL).

States ψ(h`) ∈ H̃Γ acted on by gauge transformations

ψ(h`)→ ψ(gs(`) h` g−1
t(`)), gn ∈ G.

Gauge invariant Hilbert space is

HΓ = L2(GL/GN ).
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Loop Quantum Gravity

General graph Γ, called a spin network,

H̃Γ = L2(SU (2)L/SU (2)N ),

an SU (2) lattice gauge theory.

If Γ′ ≤ Γ then H̃Γ′ ⊂ H̃Γ.

HΓ = H̃Γ/ ∼

H = lim
Γ→∞

HΓ
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Physical Picture

Quanta of gravity are “grains” or “chunks” of space
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Volume

Polyhedral Volume: [Bianchi, Doná and Speziale]

V̂Pol = The volume of a quantum polyhedron
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http://arxiv.org/abs/1009.3402


Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.
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Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.

Only an existence and uniqueness theorem.
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Minkowski’s theorem: a tetrahdedron

Interpret the area vectors of tetrahedron as angular momenta:

~A1 + ~A2 + ~A3 + ~A4 = 0 ⇐⇒

For fixed areas A1, . . . ,A4 each area vector lives in S2.

Symplectic reduction of (S2)4 gives rise to the Poisson brackets:

{f , g} =
4∑

l=1

~Al ·
(
∂f
∂~Al
× ∂g
∂~Al

)
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Minkowski’s theorem: a tetrahdedron

For fixed areas A1, . . . ,A4

p = |~A1 + ~A2| q = Angle of rotation generated by p:

{q, p} = 1
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Bohr-Sommerfeld Quantization of Harmonic Osc.

Require:
J =

∮
γ

pdq = (n + 1
2)2π~.

16



Dynamics

Take as Hamiltonian the Volume:

H = V 2 = 2
9
~A1 · (~A2 × ~A3)

Area of orbits given in terms of complete elliptic integrals,

J (E) =
( 4∑

i=1
aiK (m) +

4∑
i=1

biΠ(α2
i ,m)

)
E
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√
2

3 ×√
|~A1 · (~A2 × ~A3)|

A1 = j + 1/2
A2 = j + 1/2
A3 = j + 1/2
A4 = j + 3/2

◦ = Numerical
• = Bohr-Som

[PRL 107, 011301]

http://arxiv.org/abs/1102.5439


Table

j1 j2 j3 j4 Loop gravity Bohr- Accuracy
Sommerfeld

6 6 6 7

1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%
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Outstanding challenge

How to identify the ground state of a general relativistic theory?

Want to coordinate individual grains of space to recover
Minkowski space from this quantum theory.

� Use entanglement
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Outline

1 Introduction to loop gravity and the discreteness of space

2 What kind of entanglement?

3 Where (and when) is the region?

4 Why the entanglement spectrum?
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Boundary conditions for the remainder

For simplicity I restrict to:

Scalar field ϕ(x),
with m = 0

on flat D = 3 + 1 spacetime

unless otherwise stated. Metric signature (−,+,+,+).

� Results apply to any conformal field theory.
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Entanglement

Pure state |Ψ〉 ∈ HA ⊗HB.

Schmidt decomposition:

|Ψ〉 =
∑

i
λi |iA〉 ⊗ |iB〉

with |iA〉 and |iB〉 orthonormal bases in HA and HB respectively.

Leads to the reduced density matrix

ρB = TrA|Ψ〉〈Ψ|
=
∑

i
λ2

i |iB〉〈iB|
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Entanglement entropy

SE ≡ −Tr ρB log ρB = −
∑

i
λ2

i log λ2
i

For example,

|Ψ〉 =
D∑
i

1√
D
|iA〉 ⊗ |iB〉

=⇒ SE = log D

� Interested in bipartite entanglement of pure states.

But, SE is a single number  encodes limited information...
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Entanglement spectrum

Can always write

ρB = e−HE , i.e. HE ≡ − log ρB,

the “entanglement Hamiltonian".

Already diagonalized HE :

ρB =
∑

i
e−εi |iB〉〈iB|

with εi (i = 1, 2, . . . ) [λ2
i = e−εi ] the “entanglement spectrum”.

[Li & Haldane ’08]

Provides thorough understanding of entanglement.
� Study for spacetime fields.
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Spherical causal domain

Cauchy development of 3-ball with boundary 2-sphere of radius R:

Spatial 3-ball B  Cauchy
development D(B).

Entangling surface the
boundary 2-sphere ∂B = S2.

Choose adapted coordinates
that preserve S2: similar to
how polar coords fix (0, 0)...
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Diamond coordinates

Use hyperbolas

Diamond coords (λ, σ, θ, φ):

t = R shλ
chλ+ chσ

r = R shσ
chλ+ chσ

with λ ∈ (−∞,∞), σ ∈ [0,∞).

The Minkowski metric becomes

ds2 = R2

(chλ+ chσ)2 [−dλ2 + dσ2 + sh2σdΩ2],

a conformal rescaling of static κ = −1 FRW.
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Conformal completion

Diamond coordinates can be extended to all of Minkowski space

E.g. region II:

t = R sh λ̃
ch σ̃ − ch λ̃

,

r = R sh σ̃
ch σ̃ − ch λ̃

 |λ̃| ≤ σ̃.
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Rindler Limit

Large σ limit:

t = 2Re−σshλ = ` shλ
R − r = 2Re−σchλ = ` chλ

coord transformation to (left)
Rindler wedge.

The proper distance from right corner is ` = 2Re−σ.

30



Current

Congruence ξµ =
(
∂
∂λ

)µ
with current Jµ = Tµνξν ,

∇µJµ =����
�: 0

(∇µTµν)ξν + Tµν∇µξν = Tµν∇(µξν).

N ξµ is a conformal Killing =⇒ ∇µJµ = 1
2θT

µ
µ (θ = ∇ρξρ).

For dilatation invariant field theory Tµ
µ = 0 (on shell) so

∇µJµ = 0,

and Jµ is a Nöther current.
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Entanglement (or foliation) Hamiltonian

The conserved charge is

C =
∫

Tµνξ
µdΣν

with Tµν the stress-tensor. It generates the spatial foliation
discussed above:

Explicitly this charge is,

Cin = 1
2R

∫
B

r2dr dΩ̃
(1

2(R2 − r2)(ϕ̇2 + ~∇ϕ · ~∇ϕ) + ϕ2
)
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Density matrix from Euclidean path integral
Minkowski vacuum:

Spherical density matrix:

Rindler density matrix:

tE = R sinλE
cosλE + chσ

r = R shσ
cosλE + chσ

Bipolar
coords

ρB =
∫
Dϕe−SE = e−2πCin
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Temperatures

ρB = e−2πCin/Z : thermal density
matrix satisfying KMS condition.

2) Martinetti-Rovelli temperature

TMR = 1
2π

dλ
dτ = 1

2π
(chλ+chσ)

R
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1
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0.0.0.55

1

[M & R ’02, Wong et al ’13]

Thermometer measures Tµνξ
µuν .

1) Geometric temperature

TG = 1
2π

ds2 = R2

(chλ+chσ)2 [−dλ2+
dσ2 + sh2σdΩ2]

3) Thermometer (Unruh) temp.
TU = a

2π = 1
2π

shσ
R

-1 -0.5 0 0.5 1

-1
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0.5

1

0.0.0.55 1-1 -0-0-0.5.5.5 0
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1

• The region is not clearly in equilibrium. [Chirco, HMH & Rovelli ’13]
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Conformal symmetry

Curved spacetime Lagrangian density (D=4 spacetime dimensions)

L = 1
2
√
−g[gµν∂µϕ∂νϕ+ (m2 + 1

6R(x))ϕ2].

For ḡµν = Ω2(x)gµν and ϕ̄ = Ω(x)−1ϕ the m = 0 action is
invariant.

With ḡµν = ηµν the EOM transform as

�̄ϕ̄ = Ω−3[�− 1
6R]ϕ,

with � = gµν∇µ∇ν . Using this, sphere modes are

ūI
k(x) = (2k)−

1
2

R (chλ+ chσ)Π−kJ (σ)Y M
J (θ, φ)e−ikλ.
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Sphere vacuum and spherons

Minkowski case: ϕ(x) =
∫

dD−1k[akuk(x) + a†ku∗k(x)]
The vacuum satisfies ak|0〉M = 0.

Cut out all in-out entanglement to get sphere vacuum

Sphere case: ϕ(x) =
∑̃

k[sI
kuI

k + sI†
k uI∗

k + sII
k uII

k + sII†
k uII∗

k ]
The sphere vacuum satisfies sI

k|0〉S = sII
k |0〉S = 0.

sI†
k creates spherons, excitations localized within the
spherical entangling surface.
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Two-point functions

Leveraging conformal symmetry we can achieve a more substantial
characterization of the vacuum, finding its two-point functions:

D+(x, x ′) = Ω
D−2

2 (x)D̃+(x, x ′)Ω
D−2

2 (x ′)

• 1+1 spacetime:

D+(x, x ′) = − 1
4π log | −∆λ2 + ∆σ2|

• 3+1 spacetime:

D+(x, x ′) = (chλ+ chσ)∆σ(chλ′ + chσ′)
4π2R2 sh (∆σ) [−∆λ2 + ∆σ2]
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Sorkin-Johnston vacuum

Recently researchers working on causal sets have been investigating
a remarkable state, the Sorkin-Johnston vacuum:

[Johnston ’09, Sorkin ’11]

 proposed vacuum for a causal set within a causal diamond. It

is defined only through referencing the diamond’s interior

has no entanglement with outside

and so does not satisfy the Reeh-Schlieder theorem.

Afshordi et al have just investigated the Sorkin-Johnston vacuum
in 2D analytically and numerically... [Afshordi et al ’12]
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Comparison

... and amongst many other things they found a surprise: near the
L and R diamond corners the Sorkin-Johnston two-point function
is that of a static mirror in Minkowski spacetime.

� How does the sphere vacuum compare?

In the limit λ = λ′ = 0, σ, σ′ →∞:

D+
2D ∼ −

1
4π log (log `

`′ ) D+
4D ∼

1
2π(`2−`′2) log `

`′

The Rindler two-point functions. [Troost & Van Dam ’79]
(Recall ` = 2Re−σ is the proper distance from the right corner.)

=⇒ the sphere and Sorkin-Johnston vacuums differ in 2D.
Is this still true in 4D?
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Entanglement spectrum

Let us return to considering the Minkowski vacuum |0〉M .

Explicitly constructed the entanglement Hamiltonian  diagonalize
it to recover the entanglement spectrum λi = e−εi/2 and

|0〉M =
∑

i
λi |iin〉S ⊗ |iout〉S .

This shows that despite the absence of in-out entanglement you
can recover the Minkowski vacuum through a well-tuned
superposition of sphere states.
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Spin network entanglement

This suggests an intriguing perspective on spin networks.

Individual nodes are like the
interior of the sphere with no
entanglement between a
given node and its neighbors.

Can we choreograph entanglement to yield the Minkowski vacuum?
� A wealth of condensed matter research on entanglement to draw
from (MPS, PEPs, etc).
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Conclusions

Interesting connections to causal sets. What is the nature of
the Sorkin-Johnston vacuum in 4D?

Exhibited an example outside the hypotheses of the
Reeh-Schlieder theorem.

Looking to engineer the Minkowski vacuum and its
entanglement from spin network superposition.

Numerous possibilities
• More general entangling surfaces
• Deeper insights from condensed matter
• Anomalies
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