
Encoding Curved Tetrahedra in Face Holonomies

Hal Haggard
Bard College

Collaborations with Eugenio Bianchi, Muxin Han, Wojciech Kamiński, and
Aldo Riello

June 15th, 2015

Quantum Gravity Seminar
Nottingham University

math-ph/1506.03053, gr-qc/1412.7546

http://arxiv.org/abs/1506.03053
http://arxiv.org/abs/1412.7546


“Even a tiny cosmological constant casts a long shadow”
A. Ashtekar

Λ = 2.90× 10−122 `−2
P

The kinematical structure of discrete
geometries is strongly impacted by Λ

Symmetries have a richer structure
with Λ  new ideas & insights



Quasi-Poisson
Spaces

Curved PolyhedraModuli Space of  
Flat Connections



Is space discrete like a mosaic?



In 1897 H. Minkowski proved

~A1 + · · ·+ ~AN = 0, with ~Ai = Ai n̂i ,
Ai = area face i
n̂i =⊥ to face i

Physical proof for one direction:

~A1 + · · ·+ ~AN = 0 ⇐=



Baez and Barrett combined this with Kepler’s elegant realization:

Angular momentum can be used to encode areas

If F(~A) and G(~A) then:

{F ,G} =
(
~A× ∂F

∂~A

)
· ∂G
∂~A

(e.g. {Ax ,Ay} = (~A× x̂) · ŷ = (x̂ × ŷ) · ~A = Az)



Minkowski’s theorem is a discrete version of the two roles of the
gravitational Gauß law...

Eibc = εijkej
bek

c (b, c = 1, 2, 3) (i, j, k = 1, 2, 3)

... the constraint ... ... and the generator of gauge∮
E = 0 local choice of frame

~A1+ · · ·+ ~AN = 0 diagonal rotation of all the vecs



99 years after Minkowski, in 1996, M. Kapovich and J. J. Millson
found a phase space for polygons with fixed edge lengths

These non-planar polygons are equivalent to fixed area polyhedra

• p = |~A1 + ~A2|, rotates ~A1 and ~A2 leaving others fixed
• q = Angle of rotation generated by p:

{q, p} = 1



Remarkably, the volume of the tetrahedron is easily expressed in
terms of these variables

V = 1
6~e1 · (~e2 ×~e3)

Fun to discover that, with e.g.
~A2 = 1

2~e1 ×~e3 etc.,

V 2 = 2
9
~A1 · (~A2 × ~A3)



With this phase space, take the volume as a Hamiltonian

H = V =
√

2
3

√
|~A1 · (~A2 × ~A3|)



We can now quantize the system semiclassically

Require Bohr-Sommerfeld quantization condition,

S =
∮
γ

pdq = (n + 1
2)h.

Area of orbits given in terms of complete elliptic integrals,

S(V ) =
(

aK (m) +
4∑

i=1
biΠ(α2

i ,m)
)

V



0 2 4 6 8 10
0

2

4

6

8

10

12

14
VTet =

√
2

3 ×√
|~A1 · (~A2 × ~A3)|

A1 = j + 1/2
A2 = j + 1/2
A3 = j + 1/2
A4 = j + 3/2

◦ = Numerical
• = Bohr-Som

[PRL 107, 011301]



Table

j1 j2 j3 j4 Loop gravity Bohr- Accuracy
Sommerfeld

6 6 6 7

1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%
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1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%



This text is for space.
Is space discrete like a mosaic? It may be, but...

...this should be understood as a spectral discreteness.
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A spherical tetrahedron is 4 points of S3 connected by geodesics

Each face is a triangular
portion of a great 2-sphere

� Great spheres are flatly embedded in S3 (i.e. Kij = 0)

The normal to a face is well-defined
and invariant under parallel transport



The holonomy around a curved triangle is the area of the triangle



The holonomy around a curved triangle is the area of the triangle

Parallel transport of the
tangent vector is easy



The holonomy around a curved triangle is the area of the triangle

Pick up next tangent vector

and use the complement

β̄ = π − β

Transport preserves this angle



The holonomy around a curved triangle is the area of the triangle

Repeat

β̄ = π − β
γ̄ = π − γ



The holonomy around a curved triangle is the area of the triangle

ᾱ = π − α
β̄ = π − β
γ̄ = π − γ

The full holonomy is a
counterclockwise rotation
about the normal with angle

a = 2π − ᾱ− β̄ − γ̄
= α+ β + γ − π,

the area of the spherical
triangle!



In our work we have proved that

O4O3O2O1 = 1l ⇐⇒

Here
O = exp

( a
r2 n̂ · ~J

)
, O ∈ SO(3)

The closure relation is the automatic homotopy constraint. One
immediate check: for r →∞

O4O3O2O1 = 1l + r−2(a1n̂1 + a2n̂2 + a3n̂3 + a4n̂4) · ~J + · · · = 1l



Define simple paths to determine a geometrically meaningful
curved Gram matrix.

The geometrical dot product n̂1 · n̂3 is well defined at vertex 4,
but we have to rotate n̂4 to give n̂2 · n̂4 meaning at 4.

The Gram matrix is

Gram =


1 n̂1 · n̂2 n̂1 · n̂3 n̂1 · n̂4
∗ 1 n̂2 · n̂3 n̂2 ·O1n̂4
∗ ∗ 1 n̂3 · n̂4

sym ∗ ∗ 1

 .



The holonomies directly determine the sign of the curvature
through Gram.{

detGram > 0 spherical geometry
detGram < 0 hyperbolic geometry

Consider a flat
(Euclidean) tetrahedron

Its four vectors are
linearly dependent
 detGram = 0.

The general claim follows from a special case and continuity in the
curvature.

There is no need for another group.



Lift the set {O`} to a set {H`} ⊂ SU (2).

The new closure, H4H3H2H1 = 1l, is a curved Gauß constraint
and should again play its role as generator of gauge transfrmtns.

I To achieve this we must have group-valued momenta
 in this manner the theory of quasi-Poisson spaces enters



A quasi-Poisson space has a Poisson bivector, i.e. a Poisson
bracket, that violates the Jacobi identity in a specific way

If we parametrize SU (2) using the fundamental representation,
then the holonomies around faces are

H = e−i ~a·~σ2r2

With this parametrization we can construct the quasi-Poisson
brackets for the fluxes ~a

{ai , aj}qP = a
2r2 cot a

2r2 ε
ij
k ak r→∞−−−→ εijkak .



This Poisson structure naturally foliates SU (2) into leaves, these
are the conjugacy classes of SU (2)

Fixing the area of a face gives
a geodesic that sweeps out a
2-sphere in SU (2) ∼= S3.

Forming the fusion product of 4 of these phase spaces and
reducing by the Gauß constraint gives

ωH = r2 sin a
r2 d2Ω and LH = 2r2 sin a

2r2 d2Ω.
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What is the physics of a finite region of a quantum spacetime?



At the level of a single building block, the EPRL amplitude of the
3d spin-network boundary state ψΓ is

ZEPRL(ψΓ) :=
∫
DBDA e

i
2`2P

∫
B∧F [A] (

fγψΓ
)
(G[A]) =

(
fγψΓ

)
(1l)

Γ

S3

*[one dimensional lower drawing]

dual to 4-simplex boundary

SL(2,C)
spin connection

B is the ’bivector’ field
[B = ?e ∧ e on geometric states]

fγ is the Dupuis-Livine map,
it embeds ψ into spacetime

holonomy
of A



Philosophy for ΛRegge: construct a manifold out of homogeneously
curved building blocks & (d − 2)-dimensional defects

At the quantum level, the homogenous curvature is implemented
via BF − Λ

6 BB dynamics, and defects are created as in the flat case

Λ-GR = BF − Λ
6 BB + geometricity constraints



For boundary connection functionals, ΛBF in the bulk is equivalent
to CS on the boundary

Z (ψΓ) :=
∫
DBDA e

i
2`2P

∫
B∧F [A]−Λ

6 B∧B (
fγψΓ

)
(G[A])

=
∫
DA e

3i
4Λ`2P

∫
F [A]∧F [A] (

fγψΓ
)
(G[A])

=
∫
DA e

3πi
Λ`2P

CS[A] (
fγψΓ

)
(G[A]),

where the Chern-Simons functional is

CS[A] := 1
4π

∮
S3

dA ∧A+ 2
3A ∧A ∧A

Baez



Twisting the previous construction by using the γ-Holst action
gives

ZΛEPRL(ψΓ) :=
∫
DADA ei h

2CS[A]+i h
2CS[ A ] (fγψΓ

)
(G[A,A])

where (A,A) are the self- and antiself-dual parts of A

and h := 12π
Λ`2P

(
1
γ + i

)
is the complex CS level

Note
ZΛEPRL involves only quantities living on the boundary

ΛEPRL = SL(2,C)-CS evaluation of a specific Wilson graph operator



Two immediate consequences:
h := 12π

Λ`2P

(
1
γ + i

)

The CS level h is complex,  no (known) quantum group
structure associated to the graph evaluation
Fairbairn & Meusburger, Han

Invariance of the amplitude under large gauge transformations
A 7→ Ag implies <(h) ∈ Z, i.e.

12π
|Λ| ≡ 4πR2

Λ ∈ γ`2PN

Kodama, Randono, Smolin, Wieland



Three interesting limits: h := 12π
Λ`2P

(
1
γ + i

)

Vanishing cosmological constant Λ→ 0:
h →∞, & CS is projected onto its classical solutions  flat EPRL

q-deformed Lorentzian Barrett-Crane amplitude:
when γ →∞, the EPRL graph operator → Barrett & Crane’s,
while h becomes ∈ iR, giving q = exp

(
−`2P/R2

Λ
)

Noui & Roche

Semiclassical ΛRegge limit: more about this on next slide



The semiclassical ΛRegge limit is h := 12π
Λ`2P

(
1
γ + i

)

`P → 0, j →∞, with aphys ≡ γ`2P j = cnst

`P → 0 means h →∞, which corresponds to CS classical flat limit,

however

j →∞ makes the Wilson graph operator stand out and act as
a distributional source for (A,A),

thus avoiding flatness

Semiclassical limit =
study of flat connections on the graph complement S3 \ Γ



The graph complement S3 \ Γ is obtained by removing a tubular
neighborhood of Γ from S3

Here and below Γ is the graph dual to the 4-simplex boundary

Γ ⊂ S3
Γ

tubular
neighborhood

of Γ

Zoom

The boundary of S3 \ Γ is a genus 6 surface



There are two types of holonomies in S3 \ Γ:

I transverse Hb(a)

I longitudinal Gba

where a, b, . . . label the graph vertices

We need to specify the exact paths,
called a choice of framing for Γ

Hb(a)basapoint
at vertex a

Zoom on vertex a

Gba

longitudinal paths
run on the

‘top’ of the tubes
‘Top view’ of the

tubular neighborhood

1
2 3

4
5



Equations of motion
The connection on the graph complement is flat, hence
holonomies along contractible paths are trivial:

closures
←−∏

bHb(a) = 1l

parallel transports
GbaHb(a)Gab = Ha(b)−1

around 5 out of the 6 independent ‘faces’
GacGcbGba = 1l

while, around the last independent ‘face’:
G34G42G23 = H1(3)

a

1
2 3

4
5

a b



The CS phase space is P =Mflat(Σ,SL(2,C ))

Natural complex coordinates are obtained via
a trivalent decomposition of the graph and considering:

Hm ∼
(

xm
x−1

m

)
and Gm ∼

(
ym

y−1
m

)
hence um := log xm and vm := −2π log ym

The Atiyah-Bott symplectic structure h
4π
∫
∂M TrδA ∧ δA

induces the canonical Poisson brackets

{um , vn} = δm,n and {ūm , v̄n} = δm,n .



To implement the WKB approximation for simplicial geometries,
we relate (u, v) to geometrical quantities

The 4-simplex reconstruction theorem shows that

uab = −i Λ
6 aab + 2πinab

vab = h
4πΘab + i h

4πφab + i h
2 mab

where nab,mab ∈ Z are lifting ambiguities.

Also, at each 4-vertex, (ua, va) encodes shape of tet a with face
areas {aab}b; ∃ parity related solution with: (ṽa, ṽab) = (va,−vab)



The WKB approximation for simplicial geometries is

Z (u, ū|M ) ∼ Zαe
i
~R( Λh

12πi )(ΣaabΘab−ΛV Λ
4 )+ i

~R( Λh
6 )Σm′aba

+ Z α̃e−
i
~ ···

� the Regge action of simplicial General Relativity with a
cosmological constant [Regge 1961; Barrett, Foxon 1994; Bahr, Dittrich 2010]

� the two branches of opposite parity (∼ 3d QG, mini-superspace QC)

• arbitrary term depending on the choice of lift v := log y + 2πim



� Established a classical
foundation on which to build
the quantization of spacetimes
with a cosmological constant.

♣ Provide an enriched context
for understanding the role of
quantum groups in
cosmological spacetimes.

� Conjecture: the curved Minkowski
theorem holds in general  study of
flat connections on Riemann surfaces
closely related to study of discrete,
curved polyhedra.

Λ


