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“Even a tiny cosmological constant casts a long shadow”
A. Ashtekar

A =290 x 107122 ¢;?

The kinematical structure of discrete
geometries is strongly impacted by A
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Symmetries have a richer structure
with A ~~ new ideas & insights




Loop Quantum Gravity

Chern-Simons

Knot Theory Theory

Quantum Curves
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Flat Connections

Quasi-Poisson
Spaces



Is space discrete like a mosaic?




In 1897 H. Minkowski proved

N - ) - . A; = area face i
A1+"'+AN—O, with Ai—A,-n,, f: =1 to face i

Physical proof for one direction:




Baez and Barrett combined this with Kepler's elegant realization:

Angular momentum can be used to encode areas

If F(A) and G(A) then:

(e.g {As, A} =(Ax2)-§=(2xp) A=A,



Minkowski's theorem is a discrete version of the two roles of the
gravitational GauB law...

Eibc - Eijlcezelcc (ba ¢ = 17273) (iajv k= 17273)

E
E(v,w)
w N € su(2)*
)
v
... the constraint ... ... and the generator of gauge
%E =0 local choice of frame

ﬁ1+ s ﬁN =0 diagonal rotation of all the vecs



99 years after Minkowski, in 1996, M. Kapovich and J. J. Millson
found a phase space for polygons with fixed edge lengths

These non-planar polygons are equivalent to fixed area polyhedra

o p= \le + 22\ rotates f_f1 and ;{2 leaving others fixed
o ¢ = Angle of rotation generated by p:

{g;p} =1



Remarkably, the volume of the tetrahedron is easily expressed in
terms of these variables

Fun to discover that, with e.g.
Ay = %51 X €3 etc.,

€ -
2 €}
I, o
V= 661'(62 X €3)




With this phase space, take the volume as a Hamiltonian

H




We can now quantize the system semiclassically

Require Bohr-Sommerfeld quantization condition,

1
S:j{pdq:(n+—)h.
oy 2

Area of orbits given in terms of complete elliptic integrals,

4
S(V) = (aK(m) +Zbiﬂ(a?,m)> v
i=1
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Table

J1 j2 J3 ja Loop gravity Bohr- Accuracy
Sommerfeld
1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
6667 5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%
1.828 1.795 1.8%
3.204 3.162 1.3%
11 13 13 13 4.225 4.190 0.8%
2020202 5.133 5.105 0.5%
5.989 5.967 0.4%

6.817 6.799 0.3%




Is space discrete like a mosaic? It may be, but...

...this should be understood as a spectral discreteness.
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A spherical tetrahedron is 4 points of S3 connected by geodesics

Each face is a triangular
portion of a great 2-sphere

¢ Great spheres are flatly embedded in S% (i.e. K; =0)

The normal to a face is well-defined
and invariant under parallel transport



The holonomy around a curved triangle is the area of the triangle



The holonomy around a curved triangle is the area of the triangle

Parallel transport of the
tangent vector is easy



The holonomy around a curved triangle is the area of the triangle

Pick up next tangent vector

and use the complement

B=r—5

5 Transport preserves this angle

=



The holonomy around a curved triangle is the area of the triangle

Repeat
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The holonomy around a curved triangle is the area of the triangle

a=7T—«
f=n-p
Y=y

The full holonomy is a
counterclockwise rotation
about the normal with angle

a=2m—a—f3—7%
=a+f+y—m,

the area of the spherical
triangle!



In our work we have proved that

0403000, =1 =
1
Here
a . =
O:eXp<T2n-J>, 0 € SO(3)

The closure relation is the automatic homotopy constraint. One
immediate check: for r — oo

—

04030201 = 1+ 7°_2(a1ﬁ1 + agho + ashg + agfg) - J +--- =1



Define simple paths to determine a geometrically meaningful
curved Gram matrix.

The geometrical dot product 7, - 713 is well defined at vertex 4,
but we have to rotate 714 to give 7ig - Ny meaning at 4.

The Gram matrix is
1 ny-no Mg - N3 m -y
1 No-Ng T -0y
* 1 TAlg . TAL4
sym * * 1

Gram =



The holonomies directly determine the sign of the curvature
through Gram.

det Gram > 0 spherical geometry
det Gram < 0 hyperbolic geometry

Consider a flat
(Euclidean) tetrahedron

Its four vectors are
linearly dependent
~ det Gram = 0.

The general claim follows from a special case and continuity in the
curvature.

There is no need for another group.



Lift the set { Oy} to a set {H,} C SU(2).

The new closure, HyH3HoHy = 1, is a curved GauB3 constraint
and should again play its role as generator of gauge transfrmtns.

To achieve this we must have group-valued momenta
~> in this manner the theory of quasi-Poisson spaces enters



A quasi-Poisson space has a Poisson bivector, i.e. a Poisson
bracket, that violates the Jacobi identity in a specific way

If we parametrize SU(2) using the fundamental representation,
then the holonomies around faces are
5U(2)

With this parametrization we can construct the quasi-Poisson
brackets for the fluxes @

. . a .. r—00 .
{a",a’}yp = - cot 762](1’“ T2 ¢V ak




This Poisson structure naturally foliates SU(2) into leaves, these
are the conjugacy classes of SU(2)

SU(2)
Fixing the area of a face gives Q
a geodesic that sweeps out a

2-sphere in SU(2) = §3. v

Forming the fusion product of 4 of these phase spaces and

reducing by the GauB constraint gives

a a
wy = rsin - d?Q and Ly = 2r?sin 5 d?Q.
r 2r

Phase 4
space
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What is the physics of a finite region of a quantum spacetime?




At the level of a single building block, the EPRL amplitude of the
3d spin-network boundary state v is
holonomy

of A
(fvwF)(G[AD - (fvwf)(]l)

i [BAF[A
ZeprL(Yr) = /DBDA e*F e

dual to 4-simplex boundary
SL(2,C)
spin connection

B is the 'bivector’ field
[B = xe A e on geometric states]

fy is the Dupuis-Livine map,

it embeds w into Spacetime *[one dimensional lower drawing]



Philosophy for ARegge: construct a manifold out of homogeneously
curved building blocks & (d — 2)-dimensional defects

At the quantum level, the homogenous curvature is implemented
via BF — %BB dynamics, and defects are created as in the flat case

A-GR = BF — %BB -+ geometricity constraints



For boundary connection functionals, ABF in the bulk is equivalent
to CS on the boundary

[ BAFIA]-4 BAB

Z(yr) == /DBDA e@' (fy¢r)(G[A])

oy [ FIAINFIA]
:/DAe P (fyr)(G[A])

3L CS[A]
- /DA oMb (fer)(G[A)),

where the Chern-Simons functional is

CS[A] ::% SSdA/\A—i—;A/\A/\A

Baez



Twisting the previous construction by using the ~-Holst action
gives

ZneprL (Yr) /DADA (i3CSlAJ+i3Cs(A V(Fr) (G[A, 4))

where (A, A) are the self- and antiself-dual parts of A

and h := 11\27g (l + i) is the complex CS level
2\

Note
ZAeprL involves only quantities living on the boundary

AEPRL = SL(2, C)-CS evaluation of a specific Wilson graph operator



. 127
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Two immediate consequences:

The CS level h is complex, ~~ no (known) quantum group
structure associated to the graph evaluation

Fairbairn & Meusburger, Han

Invariance of the amplitude under large gauge transformations
A — A9 implies R(h) € Z, i.e.

127
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Kodama, Randono, Smolin, Wieland
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N e 128 (14)
Three interesting limits: AL vt

Vanishing cosmological constant A — 0:
h — oo, & CS is projected onto its classical solutions ~~ flat EPRL

g-deformed Lorentzian Barrett-Crane amplitude:
when v — oo, the EPRL graph operator — Barrett & Crane'’s,
while i becomes € iR, giving ¢ = exp (—¢%/R3)

Noui & Roche

Semiclassical ARegge limit: more about this on next slide



The semiclassical ARegge limit is h = 11x27§ (% + i)
7

lp—0, j—o0, with aphys= yﬁ?aj = cnst

{p — 0 means h — 00, which corresponds to CS classical flat limit,

however

j — 0o makes the Wilson graph operator stand out and act as
a distributional source for (A, A4),

thus avoiding flatness

Semiclassical limit =
study of flat connections on the graph complement $3\ I'



The graph complement $3 \ T is obtained by removing a tubular
neighborhood of I" from 3

Here and below I' is the graph dual to the 4-simplex boundary

of I'

l tubular
> neighborhood

The boundary of S\ T is a genus 6 surface



There are two types of holonomies in $3\ T":

» transverse Hy(a)
basapoint

» longitudinal Gy, at vertex g

where a, b, ... label the graph vertices

We need to specify the exact paths,
called a choice of framing for I'

longitudinal paths
run on the 1

‘top’ of the tubes
‘Top view' of the

tubular neighborhood



Equations of motion
The connection on the graph complement is flat, hence
holonomies along contractible paths are trivial:

closures ﬁbe(a) = ﬂ/ )

parallel transports

GraHy(a)Gap = Ha(b)l‘/aCj/\—%’;ﬁ> b

\ [
0y

around 5 out of the 6 independent ‘faces’

Gac Gcb Gba - Il/\

while, around the last independent ‘face’:
G314 G2 Gog = H1(3)



The CS phase space is P = Mga(2, SL(2, C))

Natural complex coordinates are obtained via
a trivalent decomposition of the graph and considering:

H,, ~ o -1 and Gm ~ Ym —1
T, Ym

hence u,, :=logz,, and v,, := =27 log y,,

N
1S

The Atiyah-Bott symplectic structure ﬁ Jop TIOANGA
induces the canonical Poisson brackets .

{uma Un} = 5m,n and {uma Un} = 6m,n




To implement the WKB approximation for simplicial geometries,
we relate (u, v) to geometrical quantities

The 4-simplex reconstruction theorem shows that

Ugh = —T— Gqp + 2TiNgp

6

h . h )
Vab = E@ab + Zﬂﬁﬁab + 7f§mab

where ngp, map € Z are lifting ambiguities.

Also, at each 4-vertex, (ug, v,) encodes shape of tet a with face
areas {agqp}p; 3 parity related solution with: (04, Uap) = (Va, —Vap)



The WKB approximation for simplicial geometries is

i Ah O rA i Ah
Z(u, ﬂlM) -~ Zae%{ﬁ(%)(Za”/,()”,,—A\ VIO ER(FH)EM,a

St

+ 7%

¢ the Regge action of simplicial General Relativity with a
cosmological constant [Regge 1961; Barrett, Foxon 1994; Bahr, Dittrich 2010]

B the two branches of opposite parity (~ 3d G, minisuperspace QC)

e arbitrary term depending on the choice of lift v := log y + 2mim



B Established a classical
foundation on which to build
the quantization of spacetimes
with a cosmological constant.

& Provide an enriched context
for understanding the role of
quantum groups in
cosmological spacetimes.

¢ Conjecture: the curved Minkowski
theorem holds in general ~~ study of
flat connections on Riemann surfaces
closely related to study of discrete,
curved polyhedra.
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