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Finite region quantum gravity

What is the physics of a finite region of a quantum spacetime?
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Divergences

“. . . no approach to quantum gravity can claim complete success
that does not explain in full and convincing detail the ultimate fate
of the divergences of perturbative quantum gravity." H. Nicolai

gr-qc/1301.5481

The mass of the LHC scalar boson (125 GeV) narrowly avoids
vacuum instability and the Landau pole of self-couplings:

Currently understood physics may hold up to the Planck scale!
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http://arxiv.org/abs/1301.5481


Polyhedral program

Ei =
∫
εijkei

bek
c dxbdxc = 8π`2PlJi −→ ~A

Gauss constraint −→ Closure relation

V̂Pol = The volume of a quantum polyhedron

[Bianchi, Doná and Speziale]
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http://arxiv.org/abs/1009.3402


Bohr-Sommerfeld Quantization of Harmonic Osc.

Require:
J =

∮
γ

pdq = (n + 1
2)2π~.
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Tetrahedra
Phase space (fixed A1, . . . ,A4):

p = |~A1 + ~A2|, q = ang. gen. p
{q, p} = 1

Take volume as Hamiltonian:

H = V 2 = 2
9
~A1 · (~A2 × ~A3)

Orbit areas are complete elliptic integrals,

J (E) =
( 4∑

i=1
aiK (m) +

4∑
i=1

biΠ(α2
i ,m)

)
E
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VTet =

√
2

3 ×√
|~A1 · (~A2 × ~A3)|

A1 = j + 1/2
A2 = j + 1/2
A3 = j + 1/2
A4 = j + 3/2

◦ = Numerical
• = Bohr-Som

[PRL 107, 011301]

http://arxiv.org/abs/1102.5439


Volume gap: pentahedra
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Robust mechanism  
volume gap: chaotic
dynamics & low density of
states at low volume

Analytic volume:
VPent =

√
2

3

(√
αβγ −

√
ᾱβ̄γ̄

)
×
√
|~A1 · (~A2 × ~A3)|,

α ≡ ~A4·(~A3×~A2)/~A1·(~A2×~A3)
etc.
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Outstanding challenge

How to identify the ground state of a general relativistic theory?

Want to coordinate individual grains of space to recover
Minkowski space from this quantum theory.

� Use entanglement
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Outline

1 Entanglement and the entanglement spectrum

2 The entanglement spectrum of a sphere

3 Interest for quantum gravity
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Entanglement insights

Tensor networks:
Condensed matter and tensor networks: Matrix Product
States (MPS), Projected Entangled Pair States (PEPS),
Tensor networks (TNs)  Area laws.
Physical corner of the Hilbert space.
Spin networks are tensor networks.

Casini, Huerta & Myers have extensively studied the entanglement
entropy of spherical causal domains. [Casini, Huerta & Myers ’11]

� New result  the entanglement eigensystem.
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http://arxiv.org/abs/1102.0440


Entanglement

Pure state |Ψ〉 ∈ HA ⊗HB.

Schmidt decomposition:
|Ψ〉 =

∑
i

√
λi |iA〉 ⊗ |iB〉

with |iA〉 and |iB〉 orthonormal bases in HA and HB respectively.

Leads to the reduced density matrix
ρB = TrA|Ψ〉〈Ψ|

=
∑

i
λi |iB〉〈iB|,

and the entanglement entropy
SE ≡ −Tr ρB log ρB = −

∑
i
λi log λi .
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Entanglement spectrum

Can always write

ρB = e−HE , i.e. HE ≡ − log ρB,

the “entanglement Hamiltonian”.

Already diagonalized HE :

ρB =
∑

i
e−εi |iB〉〈iB|

with εi (i = 1, 2, . . . ) the “entanglement spectrum”. (λi = e−εi )
[Li & Haldane ’08]

Provides thorough understanding of entanglement.
� Study for spacetime fields.
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Boundary conditions for the remainder

For simplicity I restrict to:

Scalar field ϕ(x),
with m = 0

on flat D = 3 + 1 spacetime

unless otherwise stated. Metric signature (−,+,+,+).

� Results apply to any conformal field theory.
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Outline

1 Entanglement and the entanglement spectrum

2 The entanglement spectrum of a sphere

3 Interest for quantum gravity
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Spherical causal domain

Cauchy development of 3-ball with boundary 2-sphere of radius R:

Spatial 3-ball B  Cauchy
development D(B).

Entangling surface the
boundary 2-sphere ∂B = S2.

Choose adapted coordinates
that preserve S2: similar to
how polar coords fix (0, 0)...
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Diamond coordinates

Use hyperbolas

Diamond coords (λ, σ, θ, φ):

t = R shλ
chλ+ chσ

r = R shσ
chλ+ chσ

with λ ∈ (−∞,∞), σ ∈ [0,∞).

The Minkowski metric becomes

ds2 = R2

(chλ+ chσ)2 [−dλ2 + dσ2 + sh2σdΩ2],

a conformal rescaling of static κ = −1 FRW.
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Conformal completion

Diamond coordinates can be extended to all of Minkowski space

E.g. region II:

t = R sh λ̃
ch σ̃ − ch λ̃

,

r = R sh σ̃
ch σ̃ − ch λ̃

 |λ̃| ≤ σ̃.

All hyperbolas asymp. null:
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Rindler Limit

Large σ limit:

t = 2Re−σshλ = ` shλ
R − r = 2Re−σchλ = ` chλ

coord transformation to (left)
Rindler wedge.

The proper distance from right corner is ` = 2Re−σ.
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Entanglement (or foliation) Hamiltonian

ξµ =
(
∂
∂λ

)µ
 current Jµ = Tµνξν with Tµν the stress-tensor. If

Tµ
µ = 0 the charge is conserved

C =
∫

Tµνξ
µdΣν

and generates the spatial foliation discussed above:

Explicitly this charge is,

Cin = 1
2R

∫
B

r2dr dΩ̃
(1

2(R2 − r2)(ϕ̇2 + ~∇ϕ · ~∇ϕ) + ϕ2
)
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Density matrix from Euclidean path integral
Minkowski vacuum:

Spherical density matrix:

Rindler density matrix:

tE = R sinλE
cosλE + chσ

r = R shσ
cosλE + chσ

Bipolar
coords

ρB =
∫
Dϕe−SE = e−2πCin
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Curved background QFT

Inverted strategy: study finite region of flat spacetime using QFT
on a curved background

L = 1
2
√
−g[gµν∂µϕ∂νϕ+ (��>

0
m2 + 1

6R(x))ϕ2].

Action is conformally invariant under
{

ḡµν = Ω2(x)gµν
ϕ̄ = Ω(x)−1ϕ

With ḡµν = ηµν the EOM transform as (� = gµν∇µ∇ν)

�̄ϕ̄ = Ω−3[�− 1
6R]ϕ.

Find ϕ̄ by finding ϕ.
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Sphere modes

Sphere modes:

ūI
k(x) = (2k)−

1
2

R (chλ+ chσ)Π−kJ (σ)Y M
J (θ, φ)e−ikλ
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Sphere modes analytically

Metric g = −dλ2 + dσ2 + sh2σdΩ̃2 is static κ = −1 FRW.

Separate: uk(x) = χk(λ)Π−kJ (σ)Y M
J (θ, φ) with

χk(λ) = (2k)−
1
2 e−ikλ

Π−kJ (σ) = N (k, J ) shJσ

( d
d chσ

)1+J
cos (kσ)

Y M
J (θ, φ) spherical harmonics

M = −J ,−J + 1, . . . , J ; J = 0, 1, . . . ; 0 < k <∞.

Sphere modes: ϕ̄ = Ω(x)−1ϕ, (recall Ω = R/(chλ+ chσ) )

ūI
k(x) = (2k)−

1
2

R (chλ+ chσ)Π−kJ (σ)Y M
J (θ, φ)e−ikλ.
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Sphere vacuum and spherons

Minkowski case: ϕ(x) =
∫

dD−1k[akuk(x) + a†ku∗k(x)]
The vacuum satisfies ak|0〉M = 0.

Cut out all in-out entanglement to get sphere vacuum

Sphere case: ϕ(x) =
∫

dk
∑

J ,M [sI
kuI

k + sI†
k uI∗

k + sII
k uII

k + sII†
k uII∗

k ]
The sphere vacuum satisfies sI

k|0〉S = sII
k |0〉S = 0.

sI†
k creates spherons, excitations localized within the
spherical entangling surface.
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Spherical entanglement spectrum

Curved space, traceless (improved) stress tensor

Tµν = 2
3∇µϕ̄∇νϕ̄−

1
6gµν(∇ρϕ̄∇ρϕ̄)− 1

3 ϕ̄∇µ∇νϕ̄

+ 1
3gµνϕ̄�ϕ̄+ 1

6[Rab −
1
2gabR]ϕ̄2.

Entanglement Hamiltonian

Cin =
∫

B
Tµνξ

µdΣν .

Entanglement spectrum

Cin =
∫

dk
∑
J ,M

k(sI†
k sI

k −
1
2��

��*
zero pt. ener.

[sI†
k , s

I
k]).

25



Schmidt decomposition of Minkowski vacuum

Total Hamiltonian

C = Cin − Cout

C =
∫

dk
∑
J ,M

k(sI†
k sI

k+sII†
k sII

k )

|0〉M =
∫

dk
∑
J ,M

e−εk uI
k ⊗ uII

k .
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1 Entanglement and the entanglement spectrum

2 The entanglement spectrum of a sphere

3 Interest for quantum gravity
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Spin network entanglement

This suggests an intriguing perspective on spin networks.

Individual nodes are like the
interior of the sphere with no
entanglement between a
given node and its neighbors.

Can we choreograph entanglement to yield the Minkowski vacuum?
� A wealth of condensed matter research on entanglement and
tensor networks to draw from.
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Enticing direction

Clearly we want more nodes. The entanglement Hamiltonian for
multiple diamonds in Minkowski space studied by [Casini & Huerta].

Results for fermion in D = 1 + 1
spacetime:

H = Hloc + Hnonloc.

Two regions of radius R separated
by distances (a) 1

8R, (b) 1
140R,

and (c) 1
2000R.

What is the physical significance
of the non-local mixing?
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Two-point functions

Leveraging conformal symmetry we can achieve a more substantial
characterization of the sphere vacuum, finding its two-point
functions:

D+(x, x ′) = Ω
D−2

2 (x)D̃+(x, x ′)Ω
D−2

2 (x ′)

• 1+1 spacetime:

D+(x, x ′) = − 1
4π log | −∆λ2 + ∆σ2|

• 3+1 spacetime:

D+(x, x ′) = (chλ+ chσ)∆σ(chλ′ + chσ′)
4π2R2 sh (∆σ) [−∆λ2 + ∆σ2]
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Sorkin-Johnston vacuum

Causal sets provide the only fully controlled Lorentz invariant
discretization of spacetime.

A remarkable state, the Sorkin-Johnston vacuum:
[Johnston ’09, Sorkin ’11]

 proposed vacuum for a causal set within a causal diamond. It

is defined only through referencing the diamond’s interior

has no entanglement with outside

and so does not satisfy the Reeh-Schlieder theorem.

Afshordi et al have just investigated the Sorkin-Johnston vacuum
in 2D analytically and numerically... [Afshordi et al ’12]
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http://arxiv.org/abs/0909.0944
http://lanl.arxiv.org/abs/1107.0698v1
http://arxiv.org/abs/1207.7101


Comparison

... and amongst many other things they found a surprise: near the
L and R diamond corners the Sorkin-Johnston two-point function
is that of a static mirror in Minkowski spacetime.

� How does the sphere vacuum compare?

In the limit λ = λ′ = 0, σ, σ′ →∞:

D+
2D ∼ −

1
4π log (log `

`′ ) D+
4D ∼

1
2π(`2−`′2) log `

`′

The Rindler two-point functions. [Troost & Van Dam ’79]
(Recall ` = 2Re−σ is the proper distance from the right corner.)

=⇒ the sphere and Sorkin-Johnston vacuums differ in 2D.
Is this still true in 4D?
� Have the tools to completely characterize these differences.
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http://dx.doi.org/10.1016/0550-3213(79)90091-9


Reeh-Schlieder theorem

If quantum gravity cuts off the continuum what becomes of the
Reeh-Schlieder theorem?

A special, initial pure state of two
q-bits,

|Ψ〉 = 1√
2(| ↓↑〉 − | ↑↓〉)

can be used to steer one of the
q-bits onto whole bloch sphere.

More generally:

Schmidt rank of the decomp.

|Ψ〉 =
∑

i
√
λi |iA〉 ⊗ |iB〉

is at most dimHA. There is no
way to steer onto all of HB.

In what sense, if any, does the
Reeh-Schlieder theorem hold for a
large but finite #d.o.f.?
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Conclusions

Looking to engineer the Minkowski vacuum and its
entanglement from spin network superposition.

Interesting connections to causal sets. What is the nature of
the Sorkin-Johnston vacuum in 4D?

The fate of the Reeh-Schlieder theorem for a large but finite
number of degrees of freedom needs to be understood.

Numerous possibilities
• More general entangling surfaces
• Continue to draw from condensed matter
• Anomalies
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Credits

Spherical spin network: Z. Merali, “The origins of space and time,”
Nature News, Aug. 28, 2013

Special thanks to the Cracow School of Theoretical Physics, LIII
Course, 2013 for a lovely school and setting while this work was
begun. And to the Perimeter Institute for their gracious hosting of
visitors and support during the continuation of this work.
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