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Equilibrium

Gas in const gravitational field:

0th principle: At equilibrium T is
constant throughout.

False! Need to account for
relativistic effects.
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Equilibrium

Gas in const gravitational field:
Instead:

T1

(
1 + Φ(h1)

c2

)
= T2

(
1 + Φ(h2)

c2

)
,

the Tolman-Ehrenfest law.

• Gas is hotter at the bottom

Small effect: at surface of Earth

∇T
T = 10−18cm−1.
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Equilibrium

We have to separate two previously identical notions:
i) temperature T as measured by a thermometer and
ii) the label, call it τo, that says two bodies are in equilibrium

What killed T as this label?
In microcanonical:

S = k ln N (E); 1
kT ≡

dS(E)
dE .

Get equilibrium maximizing N = N1N2 under energy transfer dE .
Gives T1 = T2.

Conservation of energy is tricky in GR, intuitively dE “weighs.”
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Questions

Is there a more general statistical argument that governs
equilibrium in a relativistic context?

Can we get the Tolman law from generalization of maximizing
# micorostates, without a model for dE?

Is it possible to understand equilibrium in a generally
covariant context (thermal energy also flowing to gravity)?
Is there a general principle that retains its meaning in the
absence of a background spacetime?

We attack these questions by considering processes, or histories
and by associating an information content to an history.
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Histories

ẋ = ∂H
∂p , ṗ = −∂H

∂x

Semiclassical ensemble:

Overlap:
P(t) = |〈ψ(0)|ψ(t)〉|2

Timescale:
d2P
dt2 = 1

~2 (〈H 〉2−〈H 2〉) = − (∆E)2

~2

=⇒ to = ~
∆E

Classical:

dV (t)
dt = ∆E =⇒ to = ~

∆E

Quantum:

0

0.5

1.0
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All things thermal

Specialize to thermal states and dynamics. Then U ∼ ∆E ∼ kT .
The mean time to move from state to state is

to = ~
kT ,

a fundamental time step. Universal!

Introduce “thermal time,"

τ = t
to

= kT
~

t,

time measured in steps of to; or the # of (distinct) states transited
in time t. Parameter of Tomita flow, Connes-Rovelli [1,2].

� Unveils informational meaning of temperature (~ = k = 1):
T = τ

t is the number of states transited per unit time.
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A new postulate

Now, we can associate information to an history: it is the # of
states N the system has transited during the history’s duration.
• Agrees with Shannon’s notion of information—a # of states.

Allow two systems to interact; System 2 has access to info

I1 = log N1

about System 1 and similarly in reverse. Introduce the information
flow δI = I2 − I1.

Equilibrium: time-reversal invariant =⇒ all net flows vanish. So
we postulate,

δI = 0,

as a condition for equilibrium. Check merit with applications.
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Applications

Postulated δI = 0 =⇒ N1 = N2, but for # of states to be equal
in some interval, the transit rates must be equal,

τ1 = τ2 (recall τ = kT
~

t)

Non-relativistic equilibrium: time is universal, t dependence of
thermal time cancels and so,

τ1 = τ2 =⇒ T1 = T2.

Relativistic equilibrium: (proper) time is a local quantity ds, then,

dτ = kT
~

ds

Spacetime should be stationary, i.e. have a timelike Killing field ξ.
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Applications cont

Relativistic equilib.: thermal time dτ = (kT/~)ds, Killing field ξ.

Proper time along ξ-orbits is ds = |ξ|dt, t an affine parameter.

Equilibrium: τ1 = τ2 during interaction interval ∆t gives,

|ξ|1T1 = |ξ|2T2 or |ξ|T = const.,

this is the covariant form of the Tolman-Ehrenfest law!

Take ds2 = g00(~x)dt2 − gij(~x)x ix j , ξ = ∂/∂t; note |ξ| = √g00 and
in the Newtonian limit, g00 = 1 + 2Φ/c2, you recover the
expression on slide 2.
• Can derive Wien’s displacement law as well.
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Equilibrium: thermal time is constant

Gas in const gravitational field: • Gas is hotter at the bottom

Identical clocks at different altitudes
run at different rates, “slouching
clocks run slow.”

The temperature has to be higher at
low altitudes; the faster state
transitions compensate exactly the
slowing down of proper time.

The upper and lower systems transit
the same number of states during
interaction interval ∆t.
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Results

♣ “Two histories are in equilibrium if the net information flow
between them vanishes, namely, if they transit the same number of
states during the interaction period.”

♠ Equivalently, the thermal time τ elapsed for the two systems is
the same. This is time measured in elementary time steps to.

� Temperature is the rate at which systems move from state to
state.

11



Conclusion

Work in progress with E. Bianchi: general boundary Unruh effect.

(Oeckl [3]) Amplitude:
ZΣ[φ] = Zη[φ1, φ2].
We argue for the vacuum
Ψ0
η[φ1, φ2] = Z2πi−η[φ1, φ2].

And the KMS property
becomes manifest! Implies
the Unruh effect.

The vacuum
Ψ0
η[φ1, φ2] 6= f [φ1]g[φ2]

doesn’t factorize.
“Thermality is entanglement
in time.”

Should fit well with Olson and Ralph’s works [4,5]. 12
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