Death and Resurrection of the Zeroth Principle of Thermodynamics

Hal Haggard In collaboration with: Carlo Rovelli

April 3rd, 2013 Quantum Fields, Gravity and Information

[PRD 87, 084001], gr-qc/1302.0724

Equilibrium

Gas in const gravitational field:

 $0^{\rm th}$ principle: At equilibrium T is constant throughout.

False! Need to account for relativistic effects.

Equilibrium

Gas in const gravitational field:

Instead:

$$T_1\left(1+\frac{\Phi(h_1)}{c^2}\right) = T_2\left(1+\frac{\Phi(h_2)}{c^2}\right),$$

the Tolman-Ehrenfest law.

• Gas is hotter at the bottom

Small effect: at surface of Earth

$$\frac{\nabla T}{T} = 10^{-18} \mathrm{cm}^{-1}.$$

Equilibrium

We have to separate two previously identical notions:

- i) temperature T as measured by a thermometer and
- ii) the label, call it τ_o , that says two bodies are in equilibrium

What killed T as this label? In microcanonical:

$$S = k \ln N(E);$$
 $\frac{1}{kT} \equiv \frac{dS(E)}{dE}.$

Get equilibrium maximizing $N = N_1 N_2$ under energy transfer dE. Gives $T_1 = T_2$.

Conservation of energy is tricky in GR, intuitively dE "weighs."

- Is there a more general statistical argument that governs equilibrium in a relativistic context?
- Can we get the Tolman law from generalization of maximizing # micorostates, without a model for dE?
- Is it possible to understand equilibrium in a generally covariant context (thermal energy also flowing to gravity)? Is there a general principle that retains its meaning in the absence of a background spacetime?

We attack these questions by considering *processes*, or histories and by associating an information content to an history.

Histories

$$\dot{x} = \frac{\partial H}{\partial p}, \qquad \dot{p} = -\frac{\partial H}{\partial x}$$

Semiclassical ensemble:

Overlap:

 $\dot{P}(t) = |\langle \psi(0) | \psi(t) \rangle|^2$

$$\begin{split} \text{Timescale:} \\ \frac{d^2 P}{dt^2} &= \frac{1}{\hbar^2} (\langle H \rangle^2 - \langle H^2 \rangle) = -\frac{(\Delta E)^2}{\hbar^2} \\ & \Longrightarrow \boxed{t_o = \frac{\hbar}{\Delta E}} \end{split}$$

All things thermal

Specialize to thermal states and dynamics. Then $U\sim \Delta E\sim kT.$ The mean time to move from state to state is

$$t_o = \frac{\hbar}{kT},$$

a fundamental time step. Universal!

Introduce "thermal time,"

$$\tau = \frac{t}{t_o} = \frac{kT}{\hbar}t,$$

time measured in steps of t_o ; or the # of (distinct) states transited in time t. Parameter of Tomita flow, Connes-Rovelli [1,2].

• Unveils informational meaning of temperature ($\hbar = k = 1$): $T = \frac{\tau}{t}$ is the number of states transited per unit time.

A new postulate

Now, we can associate information to an history: it is the # of states N the system has transited during the history's duration.

• Agrees with Shannon's notion of information—a # of states.

Allow two systems to interact; System 2 has access to info

 $I_1 = \log N_1$

about System 1 and similarly in reverse. Introduce the information flow $\delta I = I_2 - I_1$.

Equilibrium: time-reversal invariant \implies all net flows vanish. So we postulate,

$$\delta I = 0,$$

as a condition for equilibrium. Check merit with applications.

Applications

Postulated $\delta I = 0 \implies N_1 = N_2$, but for # of states to be equal in some interval, the transit rates must be equal,

$$au_1 = au_2$$
 (recall $au = \frac{kT}{\hbar}t$)

Non-relativistic equilibrium: time is universal, t dependence of thermal time cancels and so,

$$\tau_1 = \tau_2 \implies T_1 = T_2.$$

Relativistic equilibrium: (proper) time is a local quantity ds, then,

$$d\tau = \frac{kT}{\hbar}ds$$

Spacetime should be stationary, i.e. have a timelike Killing field ξ .

Applications cont

<u>Relativistic equilib.</u>: thermal time $d\tau = (kT/\hbar)ds$, Killing field ξ . Proper time along ξ -orbits is $ds = |\xi|dt$, t an affine parameter.

Equilibrium: $\tau_1 = \tau_2$ during interaction interval Δt gives,

$$|\xi|_1 T_1 = |\xi|_2 T_2 \qquad \text{or} \qquad |\xi| T = \text{const.},$$

this is the covariant form of the Tolman-Ehrenfest law!

Take $ds^2 = g_{00}(\vec{x})dt^2 - g_{ij}(\vec{x})x^ix^j$, $\xi = \partial/\partial t$; note $|\xi| = \sqrt{g_{00}}$ and in the Newtonian limit, $g_{00} = 1 + 2\Phi/c^2$, you recover the expression on slide 2.

• Can derive Wien's displacement law as well.

Equilibrium: thermal time is constant

Gas in const gravitational field:

• Gas is hotter at the bottom

Identical clocks at different altitudes run at different rates, "slouching clocks run slow."

The temperature has to be higher at low altitudes; the faster state transitions compensate exactly the slowing down of proper time.

The upper and lower systems transit the same number of states during interaction interval Δt .

"Two histories are in equilibrium if the net information flow between them vanishes, namely, if they transit the same number of states during the interaction period."

 \blacklozenge Equivalently, the thermal time τ elapsed for the two systems is the same. This is time measured in elementary time steps t_o .

Temperature is the rate at which systems move from state to state.

Conclusion

Work in progress with E. Bianchi: general boundary Unruh effect.

(Oeckl [3]) Amplitude: $Z_{\Sigma}[\phi] = Z_{\eta}[\phi_1, \phi_2].$ We argue for the vacuum $\Psi_{\eta}^0[\phi_1, \phi_2] = Z_{2\pi i - \eta}[\phi_1, \phi_2].$ And the KMS property becomes manifest! Implies the Unruh effect.

The vacuum

 $\Psi^{0}_{\eta}[\phi_{1},\phi_{2}] \neq f[\phi_{1}]g[\phi_{2}]$

doesn't factorize.

"Thermality is entanglement in time."

Should fit well with Olson and Ralph's works [4,5].