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General boundary purposes

The boundary formalism is useful in quantum gravity:

Allows generally covariant approach to quantum field theory

Standard quantum field theory is included in the formalism

Puts the dependent and independent variables on the same
footing by focusing on processes
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More features

Deals with actual laboratory physics: finite spacetime regions

Unifies the ideas of state preparation and state measurement
(or destruction)  just boundary observation

Crossing symmetry of QFT becomes manifest

A + B → C + D =⇒
A→ B̄ + C + D

A + C̄ → C̄ + D . . .

2



Questions

What do we learn from the thermality of event horizons?

Is horizon thermality local? Is there a quantum version of the
equivalence principle?

How does entanglement speak with gravity and the boundary
formalism?
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Outline

1 Thermality of the vacuum and general boundaries

2 Local gravity at the boundary

3 Entanglement, gravity, and the boundary
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Structure of the general boundary formalism

Fundamental ingredients: 1) Decomposition: Oeckl [1,2,3]

Hilbert space B of
∂R decomposes:
B = H1 ⊗H2

2) Gluing: glue two manifolds along boundary, amplitudes add

Think of path integrals over regions. Rigorous in context of TQFT.
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The vacuum

Minkowski vacuum Conrady et al [4]:

|0M 〉〈0M | = limT→∞
∑

n e−EnT |n〉〈n| ≡ limT→∞W (T ),

with |n〉 a Fock basis. In a field basis,

W [ϕ1, ϕ2,T ] = 〈ϕ2|W (T )|ϕ1〉 =
∫ φ|t=T =ϕ2
φ|t=0=ϕ1

Dφe−ST
E [φ].

Vacuum in H1: Ψ0
M [ϕ1] = limT→∞W [0, ϕ1,T ]

H∗2: Ψ0
M [ϕ2] = limT→∞W [ϕ2, 0,T ]
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The vacuum

Non-perturbative case  metric included as boundary field:

W [ϕ,Σ] =
∫
φ|Σ=ϕDφe−SR

E [φ]

Minkowski vacuum in B = Hin ⊗H∗out ⊗Hside,

Ψ0
M [ϕ] = lim

r ,T→∞
W [ϕin , ϕ, ϕrT ],

where ϕrT = (0, grT ).
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The Kubo-Martin-Schwinger condition

The KMS condition is standard for identifying thermality.

For a statistical state ρ and observable A

〈A〉 = Tr[Aρ],

the correlation of A and B is

〈AB〉 = Tr[ABρ],

and the time-dependent correlation is

〈A(t)B(0)〉 = Tr[eiHtAe−iHtBρ].

Then the KMS condition is

〈A(t)B(0)〉 = 〈B(0)A(t + iβ)〉,

with β the inverse temperature.
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Minkowski vacuum for wedge boundary?

What is the vacuum state in a Rindler wedge? (work w/ E. Bianchi)

Amplitude as above:
WΣ[ϕ] = Wη[ϕ1, ϕ2].

Idea: Vacuum should be the
path integral over the
exterior of the wedge.

Boost through the light cone
by analytically continuing:
� pick up i π2 on each
crossing of the light cone.

Builds on the ideas of Unruh and Weiss [5].
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Wedge vacuum

Wedge amplitude Wη[ϕ1, ϕ2]; conjecture Ψ0
η = W−η+2πi [ϕ1, ϕ2].

To check it, do path integral for
free scalar field:

〈ϕ1(x)ϕ2(x)〉η =
∫
DϕΨ0

ηϕ1ϕ2Wη∫
DϕΨ0

ηWη
.

For insertions along accelerated
trajectory

G(τ) = 〈ϕ1(x)ϕ2(x)〉η=aτ

∼ 1
sinh2 ( η

2 ) = 1
sinh2 ( aτ

2 )

The Unruh effect: G(τ) = G(τ + 2π
a i), a thermal correlation.
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Entanglement and the vacuum

The boundary formalism provides a new intepretation of the
thermality of the Rindler dynamics.

QFT: vacuum state factorizes

Ψ0
t [Φ1,Φ2] = ψ0[Φ1]ψ0[Φ2]

Vacuum state Rindler wedge:

Ψ0
η[ϕ1, ϕ2] 6= f (ϕ1)g(ϕ2)

Minkowski vacuum has
entanglement between initial
and final Rindler times
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Outline

1 Thermality of the vacuum and general boundaries

2 Local gravity at the boundary

3 Entanglement, gravity, and the boundary
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Rindler horizons

In the near horizon limit all black hole horizons look like the
Rindler horizon. (e.g. Jacobson & Parentani [6])

Analogs of black hole results can be derived for Rindler, e.g.:
• ∆AH = 8πG

κ ∆Q Bianch & Satz [7]

• ∆Sgen ≥ 0 Wall [8,9]

• ∆Sent = ∆AH
4G Bianch [10]

For example, the last work provides new resolutions to:
1) Entanglement entropy of Rindler horizon divergent,
2) tuning of high energy cutoff Λ, 3) species problem.

These works all use the tools of perturbative quantum field theory
and provide an accessible treatment of quantum Rindler horizons.
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http://arxiv.org/abs/gr-qc/0302099
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Quantum equivalence principle

The above references suggest and support a quantum version of
the equivalence principle.

Near a corner a finite spacetime region looks like Rindler

Specific realization: assume that near corners physics is locally
Lorentz invariant.
♣ Below we investigate the consequences of this assumption

for non-perturbative, general-boundary gravity.
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Outline

1 Thermality of the vacuum and general boundaries

2 Local gravity at the boundary

3 Entanglement, gravity, and the boundary
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Milo
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Milo

Milo calculaing with generally covariant statistical mechanics!
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Gravitational equilibrium

Informational notions clarify local equilibrium where T (t,~x):
Gas in const gravitational field:

• Gas is hotter at the bottom

Identical clocks at different altitudes
run at different rates, “slouching
clocks run slow.”

The temperature has to be higher at
low altitudes; the faster state
transitions compensate exactly the
slowing down of proper time.

The upper and lower systems transit
the same number of states during
interaction interval ∆t.

[HMH & Rovelli], gr-qc/1302.0724
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Strategy

I want to explain the sense in which the boundary formalism shifts
focus from ‘states’ to ‘processes’.

This exploration leads naturally to the identification and inclusion
of statistical states in the boundary formalism.

The strategy will be to move “upwards" towards more covariance
by proceeding as follows:
non-relativistic formalism  relativistic formalism  
general-covariant boundary formalism
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Non-relativistic formalism

With Ht ' H, define the boundary Hilbert space Bt = H0 ⊗H∗t .
This is the space of kinematical processes, e.g. Ψ = ψ ⊗ φ∗.

Mechanics

Two notable structures:

Wt(ψ ⊗ φ∗) := 〈φ|e−iHt |ψ〉,
and extend by linearity. In a
Schrödinger basis |x, x ′〉

Wt(x, x ′) = 〈x ′|e−iHt |x〉.

σ : ψ 7→ ψ ⊗ (e−iHtψ)∗.
Ψ in Image(σ) satisfy
Wt(Ψ) = 1, call them
“physical boundary states".

Stat. Mech.

Statistical state
ρ =

∑
n cn |n〉 ⊗ 〈n| ∈ B0,

s.t.
∑

n cn = 1.

There is a corresponding
element of Bt ,
ρt =

∑
n cn |n〉〈n|eiHt

and it is physical, Wt(ρt) = 1.

〈A(t)B(0)〉 = Wt( (B⊗A) ρt)
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Non-relativistic formalism II

Which are the solutions of the physical state condition 〈Wt |Ψ〉?

Due to unitarity (e−iHt |n〉)∗ is a basis of H∗t . When Bt = H0⊗H∗t ,

Bt 3 Ψ =
∑

nn′ cnn′ |n〉 ⊗ (e−iHt |n′〉)∗.
Therefore,

〈Wt |Ψ〉 =
∑

nn′ cnn′〈n′|eiHte−iHt |n〉 =
∑

n cnn = 1,

is precisely the trace class condition and so:
� They are the pure and statistical states from previous slide.

Notice that Ψ ∈ Bt is not generally normalized, instead

|Ψ|2 =
∑

nn′ |cnn′ |2 ≤ 1,

with equality if Ψ is a pure state.
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Relativistic formalism

Parallel structure: main idea is to include the time in the boundary
state. K is Hilbert space of (generalized) states ψ(x, t).

The boundary Hilbert space is B = K ⊗K∗ (no t label needed).
Mechanics

Two notable structures:

W (ψ ⊗ φ∗) := 〈φ|P|ψ〉,
and extend by linearity. In a
Schrödinger basis
W (x, t, x ′, t ′) = 〈x ′, t ′|P|x, t〉

= 〈x ′|ei(t−t′)H |x〉.

σ : ψ 7→ ψ ⊗ ψ∗.
Image(σ): W (Ψ) = 1.

Stat. Mech.

ψn soln t-dep. Schrödinger eq
ρ =

∑
n cnψnψ

∗
n ,

s.t.
∑

n cn = 1. E.g. ,
ρ(x, t, x ′, t ′) =∑

n cn ψn(x, t) ψn(x ′, t ′).

〈AB〉 = W ( (B ⊗A) ρ)
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General boundary

Quantum system: (B,A,W ), the boundary Hilbert space, an
algebra of observables, and a linear map defining the dynamics.

Ψ ∈ B represent processes. If A(Ψ) = aΨ, it represents a process
where the corresponding boundary observable has value a.

W (Ψ) = 〈W |Ψ〉 is the amplitude of a process. Its modulus
square determines the relative probability of distinct processes.

Physical processes Ψ ∈ B have amplitude one, 〈W |Ψ〉 = 1.

If a tensor structure in B is not given, then there is no a priori
distinction between pure and mixed states.
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Quantum Gravity

Study probability amplitudes for local processes by associating
boundary states to a finite portion of spacetime, and including the
quantum dynamics of spacetime itself in the process.

Quantum equivalence principle & Unruh effect  all local
boundary states are mixed. But B can be made bipartite in many
different manners, so better to say non-separable.

Local gravitational states are entangled states

Remarkably, the complete absence of physical pure states means
that there is no distinction between quantum and statistical
fluctuations in quantum gravity. (see also Smolin [11 12])
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Results

♣ The Minkowski vacuum in the Rindler wedge can be described
by Ψ0

η[ϕ1, ϕ2] 6= f (ϕ1)g(ϕ2).

♠ Opens the way to a general covariant treatment of quantum
statistical mechanics. Rovelli [13]

� In quantum gravity finite spacetime regions are the describable
physical processes.
It appears that these regions are always entangled  there is no
fundamental distinction between statistical and quantum
fluctuations.
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