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Finite region quantum gravity

What is the physics of a finite region of a quantum spacetime?

Finite regions can incorporate diffeos of GR into a quantum
context  avoid notorious difficulties, e.g. [Arkani-Hamed et al].

http://arxiv.org/abs/0704.1814


Entanglement provides a vibrant tool for quantum gravity

Entanglement correlations can
distinguish vacua, ...

... and offer insight into
spacetime thermodynamics.

... provide a compelling
calculation of black hole
entropy, ...



What is the detailed entanglement of a finite region of spacetime?

Spin networks describe finite spatial
regions  their entanglement can
provide consistency checks and
design principles

Casini, Huerta & Myers have
extensively studied the
entanglement entropy of
spherical causal domains.
[Casini, Huerta & Myers ’11]

� New result  the entanglement spectrum (or eigensystem).

http://arxiv.org/abs/1102.0440
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The Hilbert space of loop gravity is similar to Fock space of QED
and to lattice gauge theory (e.g. QCD):

H.

Built on graphs:

Graph Γ

L “links” `
N “nodes” n

source and target:
s : ` 7→ s(`) and t : ` 7→ t(`)



Fock Space

Massive scalar field:
I One particle: H1 = L2(M ), M the Lorentz hyperboloid.
I n particles,

Hn = L2(M n)/ ∼

with ∼ permutations. Factorization symmetrizes states.
I All states up to N particles

HN =
N⊕

n=0
Hn .

Fock space
HFock = lim

N→∞
HN .



Lattice Gauge Theory

Lattice Γ with L links `, N nodes n and gauge group G

H̃Γ = L2(GL).

States ψ(h`) ∈ H̃Γ acted on by gauge transformations

ψ(h`)→ ψ(gs(`) h` g−1
t(`)), gn ∈ G.

Gauge invariant Hilbert space is

HΓ = L2(GL/GN ).



Loop Quantum Gravity
General graph Γ, called a spin network,

H̃Γ = L2(SU (2)L/SU (2)N ),

an SU (2) lattice gauge theory.

If Γ′ ≤ Γ then H̃Γ′ ⊂ H̃Γ.

HΓ = H̃Γ/ ∼

H = lim
Γ→∞

HΓ
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Physical Picture

Quanta of gravity are “grains” or “chunks” of space



Physical Picture
Gauge freedom is the freedom to reorient frame throughout space

Geometry captured through volume v of nodes and area j of links



Can introduce dynamics with a discrete path integral or ‘spin foam’

Z =
∑
jf ,ve

∏
f

(2jf + 1)
∏
v

Av(jj , ve)

Av(jf , ve) = Tr[⊗e∈vfγ(ve)]

Remarkably,

Av ∼ eiSRegge

The Regge action discretizes the Einstein-Hilbert action



Volume
Polyhedral Volume: [Bianchi, Doná and Speziale]

Gravitational Gauß law: sum of fluxes at node vanishes,
∑

i
~̂Ji = 0

V̂Pol = The volume of a quantum polyhedron

http://arxiv.org/abs/1009.3402


Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.



Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.

Only an existence and uniqueness theorem.



Polyhedra can be turned into dynamical systems

Interpret the area vectors as angular momenta:

~A1 + ~A2 + ~A3 + ~A4 = 0 ⇐⇒

For fixed areas A1, . . . ,A4 each area vector lives in S2.

Symplectic reduction of (S2)4 gives rise to the Poisson brackets:

{f , g} =
4∑

l=1

~Al ·
(
∂f
∂~Al
× ∂g
∂~Al

)



The reduced phase space of a tetrahedron is a sphere

For fixed areas A1, . . . ,A4

p = |~A1 + ~A2| q = Angle of rotation generated by p:

{q, p} = 1



Recall Bohr-Sommerfeld Quantization of Harmonic Oscillator

Require:
J =

∮
γ

pdq = (n + 1
2)2π~.



Dynamics
Take as Hamiltonian the Volume:

H = V 2 = 2
9
~A1 · (~A2 × ~A3)

Action of orbits given in terms of complete elliptic integrals,

J (E) =
( 4∑

i=1
aiK (m) +

4∑
i=1

biΠ(α2
i ,m)

)
E
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√
2

3 ×√
|~A1 · (~A2 × ~A3)|

A1 = j + 1/2
A2 = j + 1/2
A3 = j + 1/2
A4 = j + 3/2

◦ = Numerical
• = Bohr-Som

[PRL 107, 011301]

http://arxiv.org/abs/1102.5439


Table

j1 j2 j3 j4 Loop gravity Bohr- Accuracy
Sommerfeld

6 6 6 7

1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%
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Does a volume gap persist for more complex polyhedra?
(e.g # faces > 4)
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• Robust mechanism  
volume gap: chaotic
dynamics & low density of
states at low volume

[PRD 87, 044020]

Analytic volume:
VPent =

√
2

3

(√
αβγ −

√
ᾱβ̄γ̄

)
×
√
|~A1 · (~A2 × ~A3)|,

α ≡ ~A4·(~A3×~A2)/~A1·(~A2×~A3)
etc.

http://arxiv.org/abs/1211.7311


Outstanding challenge

How to identify the ground state of a general relativistic theory?

Want to coordinate individual grains of space to recover
Minkowski space from this quantum theory.

� Use entanglement
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Tensor networks, already valuable in condensed matter, are a
natural fit for loop gravity

|Ψ〉 =
∑

i1,i2,...,iN
Ci1i2···iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉

The many body Hilbert
space is too large (∼ pN )

(a) Matrix Prod States (MPS)
(b) Proj Ent Pair Sts (PEPS)
(c) Tensor networks (TNs)

 Area laws

� Spin networks are tensor networks



Entanglement
Pure state |Ψ〉 ∈ HA ⊗HB.

Schmidt decomposition:

|Ψ〉 =
∑

i

√
λi |iA〉 ⊗ |iB〉

with |iA〉 and |iB〉 orthonormal bases in HA and HB respectively.

Leads to the reduced density matrix

ρB = TrA|Ψ〉〈Ψ|
=
∑

i
λi |iB〉〈iB|,

and the entanglement entropy

SE ≡ −Tr ρB log ρB = −
∑

i
λi log λi .



The entanglement spectrum unveils a thorough description of
entanglement.

Can always write

ρB = e−HE , i.e. HE ≡ − log ρB,

the “entanglement Hamiltonian”.

Already diagonalized HE :

ρB =
∑

i
e−εi |iB〉〈iB|

with εi (i = 1, 2, . . . ) the “entanglement spectrum”. (λi = e−εi )
[Li & Haldane ’08]

� Study for spacetime fields.
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Boundary conditions for the remainder

For simplicity I restrict to:

Scalar field ϕ(x),
with m = 0

on flat D = 3 + 1 spacetime

unless otherwise stated. Metric signature (−,+,+,+).

� Results apply to any conformal field theory.



The finite region of interest is the Cauchy development of a 3-ball
with boundary 2-sphere of radius R:

Spatial 3-ball B  Cauchy
development D(B).

Entangling surface the
boundary 2-sphere ∂B = S2.

Choose adapted coordinates
that preserve S2: similar to
how polar coords fix (0, 0)...



Use hyperbolas to build coordinates on the diamond

Diamond coords (λ, σ, θ, φ):

t = R shλ
chλ+ chσ

r = R shσ
chλ+ chσ

with λ ∈ (−∞,∞), σ ∈ [0,∞).

The Minkowski metric becomes

ds2 = R2

(chλ+ chσ)2 [−dλ2 + dσ2 + sh2σdΩ2],

a conformal rescaling of static κ = −1 FRW.



Diamond coordinates can be extended to all of Minkowski space

E.g. region II:

t = R sh λ̃
ch σ̃ − ch λ̃

,

r = R sh σ̃
ch σ̃ − ch λ̃

 |λ̃| ≤ σ̃.

All hyperbolas asymp. null:



Near the L and R corners the diamond is approximately Rindler.

Large σ limit:

t ≈ 2Re−σshλ = ` shλ
R − r ≈ 2Re−σchλ = ` chλ

coord transformation to (left)
Rindler wedge.

The proper distance from right corner is ` = 2Re−σ.



Entanglement (or foliation) Hamiltonian

ξµ =
(
∂
∂λ

)µ
 current Jµ = Tµνξν with Tµν the stress-tensor. If

Tµ
µ = 0 the charge is conserved

C =
∫

Tµνξ
µdΣν

and generates the spatial foliation discussed above:

Explicitly this charge is,

Cin = 1
2R

∫
B

r2dr dΩ̃
(1

2(R2 − r2)(ϕ̇2 + ~∇ϕ · ~∇ϕ) + ϕ2
)



The density matrix for B is given by a Euclidean path integral

Minkowski vacuum:

Spherical density matrix:

Rindler density matrix:

tE = R sinλE
cosλE + chσ

r = R shσ
cosλE + chσ

Bipolar
coords

ρB =
∫
Dϕe−SE = e−2πCin



Inverted strategy: study finite region of flat spacetime using QFT
on a curved background

L = 1
2
√
−g[gµν∂µϕ∂νϕ+ (��>

0
m2 + 1

6R(x))ϕ2].

Action is conformally invariant under
{

ḡµν = Ω2(x)gµν
ϕ̄ = Ω(x)−1ϕ

With ḡµν = ηµν the EOM transform as (� = gµν∇µ∇ν)

�̄ϕ̄ = Ω−3[�− 1
6R]ϕ.

Find ϕ̄ by finding ϕ.



Sphere modes

Sphere modes:

ūI
k(x) = (2k)−

1
2

R (chλ+ chσ)Π−kJ (σ)Y M
J (θ, φ)e−ikλ



Mode decomposition defines vacuum |0〉S and excitations above it

Minkowski space:
ϕ(x) =

∫
dD−1k[akuk(x) + a†ku∗k(x)] with vacuum ak|0〉M = 0.

Sphere: ϕ(x) =
∫

dk
∑

J ,M [sI
kuI

k + sI†
k uI∗

k + sII
k uII

k + sII†
k uII∗

k ]

sI†
k creates spherons,
excitations localized within
the S2 entangling surface

The sphere vacuum satisfies sI
k|0〉S = sII

k |0〉S = 0.

This vacuum has no in-out entanglement due to mode localization



Spherical entanglement spectrum
Curved space, traceless (improved) stress tensor

Tµν = 2
3∇µϕ̄∇νϕ̄−

1
6gµν(∇ρϕ̄∇ρϕ̄)− 1

3 ϕ̄∇µ∇νϕ̄

+ 1
3gµνϕ̄�ϕ̄+ 1

6[Rab −
1
2gabR]ϕ̄2.

Entanglement Hamiltonian

Cin =
∫

B
Tµνξ

µdΣν .

Entanglement spectrum

Cin =
∫

dk
∑
J ,M

k(sI†
k sI

k + 1
2��

��*
zero pt. ener.

[sI
k, s

I†
k ]).



Schmidt decomposition of Minkowski vacuum

Total Hamiltonian

C = Cin − Cout

C =
∫

dk
∑
J ,M

k(sI†
k sI

k+sII†
k sII

k )

|0〉M =
∫

dk
∑
J ,M

e−εk uI
k ⊗ uII

k .
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Investigation of a spherical region suggests an intriguing
perspective on spin networks.

Individual nodes are entangled
to neighbors through links.
How shall we supperpose spin
network states to recover
Minkowski geometry?

Can we choreograph entanglement to yield the Minkowski vacuum?
� A wealth of condensed matter research on entanglement and
tensor networks to learn from.



Reeh-Schlieder theorem

If quantum gravity cuts off the continuum what becomes of the
Reeh-Schlieder theorem?

A special, initial pure state of two
q-bits,

|Ψ〉 = 1√
2(| ↓↑〉 − | ↑↓〉)

can be used to steer the q-bits
onto whole state space.

More generally:

Schmidt rank of the decomp.

|Ψ〉 =
∑

i
√
λi |iA〉 ⊗ |iB〉

is at most dimHA. There is no
way to steer onto all of HB.

In what sense, if any, does the
Reeh-Schlieder theorem hold for a
large but finite #d.o.f.?



Conclusions

I presented a new independent road to the granularity of space and
the computation of the spectrum of the volume.

There are many surprises lurking in the continuum-discrete
transition (e.g. Reeh-Schlieder).

Looking to evaluate vacuum proposals and provide design criteria
to recover the Minkowski vacuum in quantum gravity. Your
suggestions?
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Sphere modes analytically
Metric g = −dλ2 + dσ2 + sh2σdΩ̃2 is static κ = −1 FRW.

Separate: uk(x) = χk(λ)Π−kJ (σ)Y M
J (θ, φ) with

χk(λ) = (2k)−
1
2 e−ikλ

Π−kJ (σ) = N (k, J ) shJσ

( d
d chσ

)1+J
cos (kσ)

Y M
J (θ, φ) spherical harmonics

M = −J ,−J + 1, . . . , J ; J = 0, 1, . . . ; 0 < k <∞.

Sphere modes: ϕ̄ = Ω(x)−1ϕ, (recall Ω = R/(chλ+ chσ) )

ūI
k(x) = (2k)−

1
2

R (chλ+ chσ)Π−kJ (σ)Y M
J (θ, φ)e−ikλ.
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