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1. Introduction

Almost twenty-five years ago the W-coefficient appeared for the first time in
a paper by Racah!) as an auxiliary tool for the computation of matrix
elements in the theory of complex spectra. Today there is hardly any branch
of physics involving angular momenta?) where the use of W-coefficients is
not needed in order to carry out the simplest computation. Yet we feel that
the W-coefficient is something more than an extremely successful computa-
tional tool and a beautiful toy for theoretical physicists to play with. In fact,
a complete understanding of the properties of this remarkable function may
very well yield to a new insight into the theory of angular momentia.

We think, and we know that our view is shared by others®), that a com-
plete investigation of the semiclassical limit of W-coefficients and related
functions is a prerequisite for a deeper understanding of their properties.

The present paper contains a heuristic derivation of an asymptotic for-
mula, or better, of a set of asymptotic formulae with separate ranges of
- validity, for the W-coefficient. ‘These formulae are certainly a useful comple-
ment to the existing tables of Racah coefficients, since they are remarkably
a}ccurate for surprisingly low values of the angular momenta involved.

A. similar point of view could be adopted for the Clebsch-Gordan co-
_ggiclents. However, since their definition depends on the particular labelling
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2 G. PONZANO AND T, REGGE

adopted for the vector basis of the representations, and since, moreover,
they can be deduced as a particular limit carried on the W-coefficients, we
are definitely tempted to regard them as subsidiary quantities in this paper.

Coming back to the W-coefficient or, rather, to the symmetric version of
it, i.e. the 6j-symbol defined by Wigner4), it has been for years a normal
practice to associate to it a diagram or graph which exhibits the symmetry
properties in a most obvious way. A further advantage of these graphs is
that they can be generalized to the higher order 3smj-symbols defined by
Wigner?) and others®%). There are at least three different versions?) of
these graphical algorithms, all having approximately the same content, the

P

bc‘{

Fig. 1. Three-dimensional represcmtation of the 6j-symbol {fle p I

translation of one into the others being achieved through some principle of
plane or space duality. The reason for choosing any one of them is rather
sentimental and largely related to individual habits.

We shall prefer here a three-dimensional representation in which angular
momenta appear as vectors satisfying “hona fide”” graphical composition
. . , bel. .
rules. In this particular calculus the 6j-symbol {Z . ;} is associated to the
tetrahedron shown in fig. 1. So far the tetrahedron is just a mnemonical
device. However, we may think about a real solid T whose edges are just
a--+, b+ 3, etc.8), With reference to fig. 1, we shall use also the following
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notation for the edges: ji,=a+3d, jiz=b+% juu=c+3 Jsa=d+h jaa
=e+3, jpa=f+1, and jiu =0, ju=Ju(h k=1,2,3,4).

‘We shall restrict ourselves to values of the angular momenta which satisfy
the trangular inequalities, i.e., |p—cl<a<b+c, ete. for the triads (abc),
(aef), (dbf ), (dec). Therefore, in each face there must be an even number of
half-integer angular momenta. This entails that the sums g, =a--b-+c, ¢,
=a+e+f, g =b+d+f, qu=c+d+e, py=a+b+dte p,=atc+d+f, p;
=b+cte+f, are all integer. Moreover, because of the triangular in-
equalities, we have

Dy = G- hob=1,2,3,4. {1.1)

While these conditions are in general sufficient to guarantee the existence of
a non-vanishing 6j-symbol, they are not enough to ensure the existence of
the tetrahedron T with the given edges. Since the two cases (A) T exists,
(B) T does not exist, deserve radically different asymptotic treatments, we
must give necessary and sufficient conditions for the existence of T.

It is known since Tartaglia®) and Jungius*?) that the square of the volume
of a tetrahedron is given by a polynomial in the square of its edges; in a
more symmetrical setting, given by Cayley in his first published paperl),
we have indeed

0 jia Jia J3s

G 0l i

23(302 Vz - J‘%tl- 1%4 0 J‘lzz
J33 Jis Jta O

1 1 1 1 0

(1.2)

Pt

Therefore we see that 7220 is a necessary condition. It can be proved to be
also sufficient. In fact let us keep all edges fixed but, for instance, j;, and
fet j,, =x. Then ¥ is a second order polynomial in x* which will have two
roots (x.)><(x.)2 Since 8[V*(x*)]/[8x7]>=—(j34)*{72, we shall have
V(x?)>0if x. <x<x..Amore elaborate discussion would show, in addi-
tion, that x . > x,, —4 where x,, is the largest between |b—c|+4 and |e—f]+3,
and that x., <x,+4 where xy is the smallest between b+c+4 and e+/+ 4.
: Therefore the condition 72> 0 is stronger than (1.1). We shall accordingly
:_distinguish between the above mentioned cases: (A) ¥2>0, and (B) V*<0.
Z:__'The third possibility, 2 =0, which would correspond to a flat tetrahedron,
i8 purely academical, for it can be proved that if p, and g, are all integer
‘then P20 (ref. 12). A “tetrahedron” in (B) will be referred to as a byperflat
ctrahedron. Let us start with case:

:- (A) We expect T to be relevant in describing the properties of 6j-symbols.
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In fact a result due to Wigner!3) states that for large angular momenta

{a b C}z N (1.3a)
de f 24xV

where Vs the volume of T. This formula, which has been a guiding principle
in the present investigation, is very interesting because it relates the numeri-
cal value of the 6j-symbol directly to a geometric property of T. However, as
stressed in the same ref. 13, Wigner’s asymptotic estimate cannot be accepted
at face value. Inspection of munerical tables shows in fact that the symbolisa
rapidly oscillating function of the indices and that the r.h.s. of {1.3a) more
correctly approximates the average of the Lh.s. over several contiguous
values of the indices. '

A correct statement would be

ab c 1 )
O— (1.3b)
{d e f} J12nv -

where % is a rapidly oscillating function so that the average %* over a large
enough interval is 1. We claim that

1 4
{” b "‘}: 1 cos( 5 j,,,ﬁ,,,c—i-;n), (1.4)
de f \/127511 0, k=1

where 8,,=0,,(k#h=1,2,3,4) are the angles between the outer normals
of the two faces which belong to ji,. Let 4, be the area of the face opposite
to the vertex k (fig. 1); then we have (appendix B)

h#k=1,234. (1.5)

Apdy, sin 6y = 3V he

(B) Wigner’s argument yiclds

“fa b c}? ’
{d ? f} ~0. (1.6)

This result could be loosely described as the impossibility of having six
angular momenta forming a non-existing tetrahedral scheme. A closer
scrutiny of mumerical tables, however, shows that the symbols in (B), al-
though, as a rule, smaller than in (A), are still non-vanishing.

Any attempt to use (1.4) in this region leads to a meaningless result. In
fact, relations (1.1) guarantee that A, are real; since V2«0, Vis imaginary
and (1.5) implies that 6,,=n=+iIm 8,,. However, as it stands, (1.4) bears
a strong resemblance with some formulae familiar from the WKB method14).
Although we know of no differential equation from which in general (1.4)
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might be deduced, there are particular instances in which this can be done
(section 5). This suggests that we may use the connection formulae of the
WEKB method to go across the transition points x., x.. We define

4
¢= . ;1 (Jm — 3) Re Oy (1.7)
which, for physical values of . is always an integer multiple of . Accord-
ing to the WKB connection formulae (appendix G), we find for physical
‘‘‘‘‘ cos @ exp(—

angular momenta
2 e ) o
de f§ 2/12x[V]| ’ '

where the sign of Im 8,, must be chosen according to the rules explained in
section 5. Also this formula turns out to be in remarkably satisfactory agree-
ment with numerical tables. The exponential decrease shown by (1.8) clearly
describes a quantum tunnel effect into the classically forbidden region (B).

We expect (1.4} and (1.8) to be inaccurate in the neighbourhood of x.
In fact, the error is here considerably large, although not disastrous. Tran-
sition formulae involving Airy functions have been worked out for this
region {section 5) and found to be accurate.

In spite of these numerical checks, a sound proof of our formulae is still
missing. However there are other arguments in favour of (1.4) and (1.8).
For instance, (1.4) has the right symmetry properties, including the extra
symmetries discovered by one of us18) and satisfies asymptotically the recur-
sion relations as well as the identities of the 6j-symbols. It is also consistent
with the previously investigated particular cases of asymptotic behaviours?®),

Relations (1.4) and (1.8), together with a transition formuia, solve com-

&
Z Juk Im Qhk
nk=1

. pletely the analysis of 6j-symbaols when all angular momenta are large, How-

ever, it is also interesting to investigate the case in which one or more edges
remain constant and finite while the others increase. We may picture the
limiting process as one in which one or more vertices of T go to infinity
either separately or in clusters. Thefefore there are as many ways to carry
out the process as decompositions of 4 into sums of natural integers, i.e.,

A4+1+1+1 (all edges large), 1-+1+2 (one small edge), 2+2 (two small
“edges), 1+ 3 (three small edges). The 1-+1+2 case has been widely studied 16),
“while we have found no reference to 2-+2 and accordingly we solve this
‘uninteresting case in the present paper. Some examples of the 143 case,

hich yield a connection between 6j- and 3/-symbols, have been discussed by

‘Brussaard and Tolhoek!$). Qur treatment, however, is quite general and
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mbol can be derived from those of the

shows how the symmetries of the 3j-sy O ot

6j-coefficient. As a by-product of this analysis, we obt
formula for Clebsch—Gordan coefficients.
Gordan coefficients

2. Asym]_)
. . .
OfsomB lnteresl 18 the 1 ‘+‘ 3 Case, VVthh occurs Whe[] WEe !ake { he 1)()S|||Ve n e}-

. fa b ¢ L The related ﬁmits{ ;
ger Rlarge N9, p o1 R f+R} J+R e

etc. can be reduced to it by synlzmetry. Thi i
sion is Racah’s i ormula (A.4), which, usmg E=x

becomes

{ a b CR}:[A(abc)A(d—I—R,e—l—R?c)x

totic connecfion with the Clebsch-

starting point of our discus-
2R as summation variable

d+Re+ RS+ e e
xA(e+R,f+R,a)A(f+R,cI+R,b)] %( 1) X
(a+b+d+e—£)!(b+c+e+fﬂé)!><
a—b—c+2R)Ix
!(éfd*b—f)!]*‘- Ay

><(£+2R+1)![
x(c+a+f+d—<§)!(é—
x(éfa-e—f)’.(ifdée—c)

i R
From Stirling’s formula we find, for instance, that for large

(E+2R+ 1T rvrers (2.2}
@j‘;{l{:(ﬁ b —c)!

which entails for example

—2a—1 3
A(cz,e+R,f+R)"_~(a+e—f)!(a#e+f)!(2R) R )]

By means of (2.2), (2.3) and similar relations, (2.1) transforms into
y 2, (2.

{ ‘ ’ ‘ }ﬁ[é(@gir[(a+e—f)!(a#e-l—f)'. X
R 2R l
o e:(};—{;——d)!(b»f +d)'.(c+d—e)!(cvd+e)!]’ P

xZ(—l)’:[(a+b+d+e*€)!(b+c+e+f—5)!><
4

x{c+ra+f +d——<§)!(€—a-e~{3!x
w(E—b-d—PE—c—d=aT

Looking at (A.1) we realiz

(2.4)

o that the r.h.s. of (2.4) can be written in terms of
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a 3j-symbol (this resulf is quoted by K. Alder et al.16)):

a b ¢ p (- 1)TFhTeR 2T ) (o py=E a b ¢
d+Re+R f+R] ™ e[ fodd—e

(2.52)
or using the pattern notfation of appendix A
a+b—c b+ f—d a+f—e
b+d-f b+c¢c—-a c+d—e
a+e—f et+c—d ct+a—b

e+d—c+2R e+ f—a+ 2R d+f_b+2R
bt+ec—a c¢c+a—b at+b-c
a—e+f b—f+d c—d-+e.
at+e—f b+f—d ct+d-—e
(2.5b)

~ (___ 1)a+b+c+2(d+e+f) (ZR)—%

From (2.5b) it is easy to check that the symmetry

a b ¢
{d+R €+Rf+R}ﬁ
2{ @ Hf4ctb-¢)  dbdeto—f) }

d+R I(f+c+e—b)+R I(b+e+f—c)+R
entails

bt+tc—a c+a—-b a+b—¢ bt+tec—a ate—f a—e+f
a—e+f b—f+d c—d+e=la+b—c c+d—e c—d+e
a+te—f b+f—d ctd—e jcta—b b+f—d b—f+d

which is one of the extra symmetries of the 3j-symbol pointed out by one of
us15). Actually, (2.5b) relates the subgroup of R, (see appendix A) formed by
all the even 36 symmetries of the 3j-symbol to the subgroup of R, corre-
sponding to permutations of columns and/or of the upper three lines of the
pattern in the Lh.s. of (2.5b). The geometrical and physical content of these
symmetries is still to be understood and they remain a puzzling feature of
the theory of angular momenta. Therefore it is a pleasant result to be able to
reduce the problem of their interpretation to the Racah coefficient only.
From (2.5a) we obtain also an expression for the 3j-symbol for large
quantum numbers. Our derivation of this result is rather heuristic as it
involves the exchange of different limiting processes. Just as for (1.4) the
formula which we are going to present has a rather “a posteriori” validity,
for it satisfies afl possible consistency checks. We obtain it from (2.5a) by
supposing a, b, ¢, d, e, f large and finite. Using (1.4) in the Lh.s. of (2.52)

¥



8 G. PONZANO AND T, REGGE

and performing the limit R— oo, we find

(27 )t

m, My Mg ) L
weos[(a + DA+ (b + DB +(c+$HC— mpD -+ mgE + in), (b )
= the third components of a,b, ¢
¢ m,,:e—f,mb=f~d, m,=d—e are the tu _ g
Zl}:)?g the direction in which P, was sent to infinity (fig. 2): A 3s th: ;rel:)a g
the shaded triangle in fig. 2 which corresponds to the p1'0Ject;(;n 0 d; ﬁ; eé
on a plane perpendicular to the z axis. The angles A,y Dy
according to (1.4) are given in terms of m,, My, M, bY

A= N
- 2(a + 1)Pm, + m (e + 3 +(a+ 3 — (b + 3]

(E@—;%SQWI@?%_)TGQZ—: vy -+ -0+d ](?;)

(a+ 3P = (b + 3~ (e D" 2 (2.8)
o030 =Gy 3 = i e 37~ el
cos B, cos C and cos E, cos F are deduced respectively from (;i)in@ﬁr)h:ryl
circulaar permutations of the labels, g, b, ¢; note that D+ E+ .

Fig. 2. Limit case in which a 6j-symbol degenerates into a 3j-symbol.
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ni, =y, =m, =0, the plane P,P,P; is perpendicular to z and A= RB=C=1}r;
(2.6) reduces to the known16) result

(3 ; 3) 2T e @A) @9)

The 2+ 2 case can be dealt with in much the same way. Using once more
¢=x—2R as summation variable, from (A.4), (2.2) we obtain

{; Zii .;iﬁ}z[(a+b~c)!(ab+c)!(a+e~f)! X
x(a—e+f){d+e—e{d—e+)(d+b—)d—b+ I x
x (2R) 22 bmemen TN C I RRY (- d b+ e — EY x
g
x{fa+d+e+f—ENE—a—b—c)l x
x({E—~a—e—N({E—c—d-e)l({E-b—d—fH]". {2.10)
For R large the main contribution {o this summation comes from the largest

allowed value of &, i.e. from the minimum between a+d+b+c and a+-d+
¢+f; therefore

ab+R ¢+ R g(— I)a+d+min(b+e,c+f) %
d e+R f+R

y [(a —b+c)la—e+f)(d—e+e)l(d=b+ f)!T“‘g““*f‘b"e)

(@a+b—cl(ate— ) {d+e—)(d+b—f) x
SRYlb+e—e=rsi-1
(ibie—c—fﬂ [1+O0®™], @1D

‘here sign (x)=+1, —1 according to x20, <0. It must be pointed out that
'h_less b+e=c+f, the corresponding tetrahedron becomes hyperflat; in
act it turns out that 144 V2= —4(b+c—e—f)PR*+O(R).

“The remaining particular case 2+ 1+1 will be discussed in some detail in

mprovement of Wigner asymptotic formula

_._c'brding to Wigner!3), the physical interpretation of the éj-symbol is
eaily related to its definition as a recoupling coefficient

'jzaja)jzs)J> =
=2 @iz + 1) (2hs + NP (- Y7 TRt {h Ja 112} y

. 12 ja J j23

x |((j1,j2)j12,j3)J>. (3.
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1t follows that
. . . 2
. . Ju 2] .
(212 + 1) (225 + 1){.1 : .12} djaas (3.2)
ja Jd Jas
is the probability that the sum of the angular momenta j, and j; has the
length in the interval faa,f33+8f2s whenever j; and j, have sum of length
jg2 and Jrz=f1+J2 is coupled with j; to a vector J of length J. As anti-
cipated in the introduction, the mutval relationship of these vectors is best

seen on a diagram (fig. 3).

Tig. 3. Recoupling scheme corresponding to G.0O.

J (ie. all the quantum numbers in the Lh.s. of (3.1)) be
fixed ; then the angle r between the plane of the vectors js.j» and the plane
of the vectorsjis, J 18 still undetermined, for both of them can rotate around
During this Totation the point P describes a circle; we
assume1¥) that every point of this circle has equal probability. Then the
probability that the length of j,, falls into the interval joa, jas+ %23 ig just
{2|dl,’1/dj23|](2n)} dj,s, the factor 2 being needed because there are two
configurations corresponding to ¥ and 2m— which yield the same ja3.
An elementary computation (appendix B) shows that

Letj1;j2=f3aj12,

the common axis jyz.

E_]"l_ = J1al2s , (3.3)
_ djas oV
of the tetrabedron in fig. 3. Therefore, for large
1.32). If Jas is such that
by varying ¥

where V is the volume
angular momenta, W obtain Wigner's result {
2 <0, it is impossible to reach the prescribed value of jaa

in the real interval 0— 27,
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r;l[l‘lt;edargun.lents given S(.).far are clearly heuristic since they assume as
\ ;ghi :, ta uniform probability distribution in . A rigorous justification of
s statement would take us too far implici
s st and would destroy the simplicity of the
arlt is, howeyer, interesting to notice that there is a variation to Wignet’s
ing;me;t which seems to have escaped detection so far, Let us suppose that
g. ‘ three of 'the vertices of the tetrahedron are held fixed, while the
?emammg one P is allowed to vary. We use J?, j73, /3 as coord;nates of P
instead of the usual Euclidean coordinates (i.e., for instance, the com
i)(?l;;nts of J: Jx; J).,; Jz-)i Notice that there are fwo points P cor,responding
© inets;lame scltl J ,1.123,_; 5. We assume that the “a priori” probability for P’ to
e small volume dV=dJ, dJ, dJ, doe
‘ I =dJ, dJ, dJ; s not depend on P. In this cas
Fhe probability that the “tricentrical” coordinates of P: J?, j7,, j§ lie i .
interval dJ?% dj2, dj3 is ey e e

6(Jx: ‘Iys JZ)

-1

dJ? djzs df3 = 2.7 dJ* dj35 dj3, (3.4)

and since

a(J2:J§31J§) _8 R .
30 dy,ay M xJaadal = 48T

_using (1.3a) we have

{jl Ja Js2 2 2 F
Ja J Jas P (3.5)

his second argument has the i

bi advanta, i

wh.igher ol ge that it can be formally generalized

11nterest1ng discussion, which leads to a generalization of Wigner’s

-e"ju_|_ai iaZn be developed by the combined use of the known results1%) for

"I-ﬁohds case and of the Biedenharn—Elliott identity17). According to
10} (eq. {A.2.2) of ref. 16) we have with our conventions of appen-

A
{C o b } (_ 1)n+b+c+_f+§
fb+da+d - {(2a + 1)(2b + l)j-,f dg{?ﬁ' (H): (3.6)

b, c are large in comparison with f, &, 8" and (ses fig. 4)

_alat bbb+ ) —clet)
2[afa + l)b(b+1)]% ,

':(')SB
0=0<m. 3.7
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Fig. 4, Particular case in which £is small with respect to the other edges.

Let us recall here the just mentioned identity_ _
' "X (d d x) {e € x
hjlfg hi 0 a a xj {d }{’ -}’
YE{Q Jd} {e’ a’ d'}:zx:(_ DC {d’ d gllee hyla al
e a . 0o
qox=g+h+j+e+a+d+e’+a"+d’+x.

Now we intend to use (3.8) under the following conditions:

i} g, ke adée, a,d, are large; . ) .
ig) i’—e:q a —a=a,d —d=34 are small with respect to the parameters

guoted in i). It follows that the 6j-symbols which appear under summation
in (3.8) are of a form suitable for the use of (3.6); we have:

{a } (0" e,

& d gf " [@a+ @d+ DT
a@+ D +dd+-gle+D G cn @9
0S¥ =T o afa + Nd(d+ DY

L _ d+rethtptx
d d x ~ Jggf_i_z d,(:%(x)’
e e h 12d + 1) (2e + D1t
_d@@a el D) gy cn (300
COs X = - 2]:(,1[(Cl+1)6(6-}—!)]3

e B' x (4 i)e+u+j+m+x_' d(x) 1)
o T Ay e A?
aajf [Ee+D@a+DET
051:&2ﬂ.i1_);j_(j;‘_12, o<i1<m, (3.11)
¢ 2e(e+ Dala+ )P
If we now replace (3.9)-(3.11) into (3.8) and assume that we ay perform
the asymptotic limit under the infinite summation on x, W¢ obtain an ?x
pression for the product of symbols in the Lh.s. of (3.8) where all ang;1 ar
momenta are large. Clearly this ptocedure is incorrect, but, nevertheless,
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it turns out that it is very instructive. We find

g hj g h 1
ecadjle+na+adtd
~[Q2a+1)Qe+1)2d+ D] Y (2x + 1) d {0 a5 (0 dilalv).
x=10Q .

(3.12)

The sum in the r.h.s. can be performed by exploiting the group representa~
tion properties of the functions d0(?) as shown in appendix C. The result is

. H 2
,{g h;}{ ¢ ko } OW) s+ ad + D), (3.13)

eadiletnatad+d " 4ny

where @(¥2)=0 or 1 according to ¥?<0 or ¥*>0; V is the volume of the
tetrahedron T with edges g +4, #+3 etc. The angles E, 4, D are defined by

COS Y COS1 — COSY
cos E=—F—F
- sin y sini

(3.14)
COS1COSY — COS Y

COSY COS ¥ — COS 1!
cos A =- re e

—— , €08 D == "
sin i siny sin 7y sin y

and A, for instance, can be interpreted as the angle between outer normals
of the two faces of T which have g as common edge. If 6 =¢=#=0, we find
once again Wigner’s result,

This procedure is in part disappointing because it fails to yield a complete

_description of the rapidly oscillating term % in (1.3b). However the result
."_'(3.13), when &, a, 0, is very illuminating because the r.h.s. contains the
“interference term cos (£ + x4 +3D) which, according to the point of view
“exposed in section 1, is an average over the product of the two rapidly

scillating factors of the two Gf-symbols.
:In order to reconstruct the original expression, let us introduce the

om=o(®? C) Sl (3.152)
= = Ll T Jdoa
de f h,kzlJM 8
h notations defined in section 1. An interesting property of £'(T} is that,
th obvious notations’s)
, , Lo o0
QI +1) - (1) = Y b or 5 = » (3.16)
B k=1

Rk

‘may vary.the parameters in € as if 0, were constant. Therefore we
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deduce readily that

oo ¢ " j)—Q'(th):nE+ocA+5D,
- e+natodtd e ad

and the r..s, is just the argnment of the cosine in (3.13). Notice’ t.hat V an'd
5Q' are slowly varying functions of the edges as compared to £ itself. This
result suggests a formula of the following type:

{a b C}ﬁ—i__" cos(Q' + ), (3.17)
de fi J12nv

where  is a yet unknown constant phase. w can be determined by matching
(3.17) to the particular 1 +1+72 case studied first by Racahl):

{a b C} G} P, (cos ), (3.18)

bafl Jea+r @+

where cos 0 is given by (3.7). If f is large, but small with r(?spect to' e, bl,gc,
we may replace the Legendre polynomial with its asymptotic behaviour1%):

2 i D0 — 4 19
Pf (cos G) o [n(? ?%Tsm@] cos [(f + 2) ] 4_71:] R (3 )

from which we deduce:
ab (=1 N 200
~ e GOS8 [(f + 7) e - ETC] N .
balf \/ 12rV
having noticed that 6V« (a+3) (b+3) (f+3$)sin 0: Onr the other l‘la:ﬂd, in
order to work out how @' depends on £, we can write ' (f+ 1) explicitly f(;r
this particular case. We have (fig. 4 with 6=3"=0): (O)=:n:(a+b+c+7)‘
and (02'/3) s+ 3—0=n—0. Therefore,

20 o
Q(f + D=0+ (Ef)er%:O(f 1) =

:n(a+b+c+%)+(ﬂ—6)(_f+‘7). (3.21)
Taking into account these results, we see that (3.20a) can be rewritten as
aboel ol oe(@ +4m), (3.20b)

balf (12=V)"

which shows not only that (3.1) is compatible with this particular case, but
also tells us that o =4n. We have reached, therefore, the important general
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formulfa
ab ¢ 1 0 9
de f _(EZEV)‘* o8 25 (1.4a)
4
Q= 3 Jubutir, (3.15b)
k=

which must be supplemented with explicit formulae for the angles 8,
(appendix B):
9 ay?
AkAk a(}lzs) ’
where h#k#r#s5=1, 2, 3,4, A4, are defined in (1.5).

cos 8, =

<b,<n (3.22)

TaBLE 1

MNumerical examples of 6j-symbols showing the degree of approximation of our asymp-
totic fermulae. The cases denoted with 1, I1, 1T correspond to the use of (1.4), (5.6), or
(5.7), (1.8) respectively. The indices 4, b, ..., f are the same as in fig. 1. The exact values of
this table as well as of table 2 are taken from A. F. Nikiforov et al., Tables of Racah coeffi-
cients (New Yorl, 1965); as usual, .1-01, for instance, means 10—2

Approximate

b ¢ d e F Exact value value
i 1 12 1/2 172 —.33333-00 —.37828-00 I
1 1 1 1 1 1666700 1668300 T
7 9/2 172 5 5/2 —.41785- 01 — 4152001 1
15/2 10 15/2 15/2 4 .16494-01 J16422-01 1
8 9/2 13/2 6 15/2 .25518-01 .25506-01 I
8 12 9 7 6 —.22441-01  — 2242201 1
9 9 9 9 9 — 1564701 -.15640-01 I
1 1/2 172 1 172 1666700 16026-00 1T
7 9/2 17/2 5 17/2 19826-01 1895401 11
13/2 15/2 8 9/2 17/2 —.20120-01 —.19897-01 10
15/2 9 15/2 15/2 13 —,13801-01 —.13773-01 II
15/2 10 15/2 1372 12 .99633-02 9794402 11
8 10 9 7 10 —.21100-01 1997101 1II
9 14 9 8 10 .13420-01 J3296-01 II
5 1/2 11/2 6 3/2 13222-01 13549-0F TII
6 9j2 1742 6 772 .10386-02 £0411-02 1L
8 13 9 7 9 - 1967102 —.19726-02 III
15/2 10 15/2 1372 14 .49191-03 4930103 11
8 13 9 7 12 —.11052-04  — 1044304 111
9 17 9 - 8 13 5975606 56161-06 TIT
9 17 9 g 16 3162209 28579-09 IIT
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4. Arguments in favor of the proposed asymptotic formula

We list here some arguments in favour of (1.4),

i) Our formula is numerically accura

fe, as can be seen from tables 14 and

figs. 5-7. On the average, the accuracy improves as the values of the anguolar
momenta increase.

Numerical results for the 6/-symbol with a=

TaBLE 2

all permissible values

7, h=8,c=9,d=6e=9 as f=J assumes

Approximate Approximate

J Exact value ppvalue J Exact value value

2 V1601802 76923-02 11T 9 — .20540—01 — .20578-01 I
3 — .22627-01 —.2217-01  1I 10 —.31376-02 —.36479-02 T
4 .29469-01 3047401 i 11 .20586-01 2052801 1
5 —.13704-01 —.13212-01 1 12 2006801 .19019-01 41
6 —,13525-01 —.13944-01% 1 i3 8477702 7829802 10
7 .20388-01 .20345-01 I 14 1663702 1663802 HI
8 34782-02 3777402 1

‘TABLE 3

Case with a=13, b
this table as well as of table

=15, e=24,d=29{2,e= 33/2 and F=J variable. The exact values of
4 were obtained by means of the recursion formula (4.3)

imat Approximate

J Exact value App:;);i :;ﬂa&e J Exact value P value

72 —.17136-01 _18812-01 1 35/2 —.66442-02 — 6603302 1L

9/2 —.94803-02 — 9438102 1 312 —.38] 16-02 —.37155-02 i1
1172 .59559-02 6086102 1 392 —.17980-02 —.18980-02. 111
13/2 ,11188-01 11222-01 1 412 —.70668-03 — 7280903 1
1542 .25847-02 2577802 1 43/2 —.2323 1-03 —.23652-03 11
1772 —.786771-02 — 7877302 1 452 —.63708-04 —.64401-04 T
19/2 —.85291-02 _ 85619-02 I 472 —.14450-04 —- 1453604 1III
21j2 —.13122-03 —.19186-03 1 4972 — 26704-05 — 26756-05 11
2372 7795802 7768002 [ 5172 — .39262-06 —.39197-06 IO
2502 B1257-02 8200302 I 532 —.44251-07 - 4399707 I
272 1759002 .19590-02 I 5572 — ,35949-08 — 3553708 1IH _
292 — 5622902 8432602 L 57/2  —.18760-09 —.1 83324)? IIE
31j2  —.95185-02 _94911-02 I 59/2 —.47264-11 — A4115-11

332 —.92382-02 — 8790302 1l
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TaBLE 4
Case with @ = 35/2, b=39%/2, ¢ =9, d=131/2, e =37/2 and f=J variable
J Exact value Approxitnate J Exact value Approximate
value value

4 2114903 20009-03  III 20 —.66008-02 —.65600-02 I

3 — .69682-03 —.71066-03 11T 21 29687-02 2901102 1

6 d6116-02 J16753-02 IO 22 .16649-02 A7306-02 1

7 —.30296-02 —.32386-02 Il 23 — 5735502 —.57788-02 1

8 4903402 4749802 H 24 7626502 7640202 1

9 — 70293-02 — . 7046702 Im 25 —.63213-02 —.63099-02 I
10 9049402 .88460-02 I 26 .20313-02 2008002 I
11 —.10502-01 —,99536-02 Ir 27 ,34992-02 3521402 1
12 .10918-01 .11351-01 I 28 — 1373402 -.73873-02 I
13 -.99508-02 9982602 I 29 .68216-02 68250-02 T
14 75021-02 .73395-02 [ 30 —.12056-02 —.11953-02 I
15 —.38167-02 -—.35839-02 I 31 Z 6164402 - 61915402 1
16 — 4992003 —.72271-03 I 32 —.83350-02 —.83482-02 1
17 45603-02 47270-02 I 33 .10743-03 .24555-03 1
18 —.73894-02 — 7478902 I 34 —.11326-01 - 1112701 1
19 8184202 .81987-02 I 35 —.58537-02 —.56155-02 11

i) (1.4) is obviously invariant under the exchange of the vertices of T. As
stated before, this is only a subgroup of the full symmetry group R, of 6/-
symbols (appendix A). We checked, however, in a somewhat taborious way,
that both ¥ and @ are actually invariant under R,. The proof is sketched in
appendix D. ‘ ‘

- iji) It has been shown 20) that the identities (A.6), (A.7), (2.8) together with
“the tetrahedral symmetries, are enough to derive all properties as well as the
: _i_;umericai values of 6j-symbols, apart from an overall phase. In particular,
‘the Biedenharn-Elliott identity and the recursion relations which follow
rom it are a distinctive feature of Racah coeflicients. Therefore it is a highly
ignificant result that our formula satisfies asymptotically not only these
scursion relations, but also the above mentioned identities.

An intuitive understanding of these formulae can be reached by a cor-
_e_s"pondence principle of the form:

where 0, are the angles appearing in €. By the same token we define the
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Fig. 5. Here, as well as in figs. 6 and 7, the interpolation between contiguous physical
points in the classically forbidden regions is based on (1.8}, For numerical values, see
table 2. According to the numerical tables, curves Jabelled with L, II, III correspond to the

T T T T T Let us consider?!)
10 7809 afla+b+ec+la—b+e+D(a+b—c+1)x
4‘|i {69'7} || ] x(b+c—a)a+e+f+D(a—e+f+D{ate—f+1)x
| Lfa+1b
3~E {a 5 . x(e+f—a)}’{ad e;}+(a+i)[(a+b+c+1)><
2-1 p /O‘T\oll | x(a—b+c)(a+b—c)(b+c_a+1)(a+ej]fb+1)><
; I ]§\\ x(ame—|~f)(a+e-—f)(e+fwa+I)]%{ad e;}—
I ]
' il l‘\{’ =Qa+ 1) {2[ala+ Dd{d +1)—b(b+1)ele+1}—clc+ 1) x
Nl T LN < f( D]+ Ta(a+1)—bb+1)—cle+DIa(at 1)+
& |
i * _6(@+1)—f(f+1)]}{zb C}; (4.3)
ST S e f
| .
By \/ ° ' Lof g i
ll i oQJ P13 15 24
| - | g %]
| 5 05 | .
“al | L 1 %
J<=|2.88%2 J>=I2.4l54!8 o \ i |
55 4 5 6 7 8 9 ol 12J 14 i
|
|

0- \ //8/0,0-%:[ O/O 0-;/—0-—0
-05 by f e 4
v

use of (1.4), (5.6), or (5.7), (1.8) respectiveiy. 0'
—t0oF © R i 1
operator {3 T !
@jhk = exp (_ —) ~ exp (%igrlk) H] (4'1) ‘
zajmc -1.5H o 1078 |
so that, for instance: \
ab c a+lb ¢ o |
@2 =
“lde f d ef |
-20t s .
and from (4.1) [ 0
abc J~3.0468 J.=17.6619
(@§+‘@n—2){d f}= 7‘]I]ll511I9I£3lé7I3IiI'dlﬁﬂlf:gl‘;l":lél-l'f!ﬁlllEI59
e 7 % 2 3 2z 22 2z %z 222 9 2

a+1b ¢ a—1bc ab
= + ~ 2 cosf,
d ef d e f de

[4

f

emyphasized.

In this case, which corresponds to table 3, the exponential decrease is particularly
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T T T 1 711 ¢+ VT3 T 1 711 [ TT
'Oua—rllea :25‘46‘ 239 J,=34.7762
< 3 3y ’

2 2 i
1. l |
| I
| |
‘ |
0.5¢ | |
’ |
1[[ﬂ L !
0 O E |
1 I
' |
-.5F |
f - .
|

1
"I e |
| |
L.t 1 1 1 1 1 L 1 1 L i 1. L.l 1 I 1 1 L 1 1 1 1 1 1. 1 1 1 1

4 6 8 10 12 4 18 I8 20 22 24 26 28 30 32 J 35

Fig. 7.‘ The corresponding numerical values for physical points are given in table 4.

using notations defined in section 1, we have asymptoticaily
+1b ¢ a—1bc¢ o, o S,
84,4, ({a i e f} +{ d e f}) o~ [2(732034 — ilsi3a — fraiia) +
) ab ¢
G-t UL -2 {1
Recalling (B.2) and (4.1) we obtain

a+lb ¢ a—15b ¢ ~ 2 0080 {ab c}
{d ef+def__ 2lde f§°

which is equivalent to the result (4.2) based on the correspondence principle

(4.3b)

(4.1). Less formally, we want to check that (4.3b) is identically satisfied if we .
replace the 6j-symbols of (4.3b) with our asymptotic formmula (1.4). Since the B
volume of T is a slowly varying function of the edges, it can be regarded as’
constant in the three symbols of (4.3b); in this case (4.3b) transforms into:

the trivial identity cos (Q+60,,)-+-cos {Q—0;,)=2 cos 045 cos £2.
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In a similar way, the recursion relation

Ha+b+c+1ﬂb+cﬁaNC+d+e+1M6+d‘@F{Zi;}+

~[a+b—ct+D(ea—b+e)le+d—c+)(etc—dIF x

x{a ; C_l}=*2c[(b+d+f+1)(b+d_f)]%><
de f

a 2 f
X
d—+b—1tc—-1

by means of (1.4) becomes asymptotically

[Uis t 712 +11a) G tiia = J12) Ura + Jaa +J3a) X
X (jra+Jaa _J'24)]% g Prarfiatfan) _ [(Ji2 +J13 —J1a) ¥
X (frz + 14 = J13) Uza + Jaa = J10) Una +Jra = Jaa) P a2 0070 r 000 o
o — 2 4 [(Jis + aa +J23) Uis +isa —Jaa)1Fs

which, using DPelambre’s relations ??), reduces to simple identities.

A much more involved computation is needed to show that also the full
Biedenharn-Elliott identity is satisfied asymptotically by (1.4). Introducing
(1.4) into the r.h.s. of (3.8), we realize that inside the summation over x
there appears a rapidly varying function of x, Its behaviour can be displayed
most transparently if we split all cosines into positive and negative frequency
parts according to Euler’s formula. Let T; (j=1, 2, 3) be the tetrahedra cor-
responding to the r.h.s. of (3.8); with obvious notations we have

3
[ cos@;=27%x _
=1
x [ +02H05) | R —05) | (@i R2400) | (i(@1- =20 4 o0,

(4.4)
Given the heuristic character of our investigation, it is reasonable to as-
sume that the discrete summation over x can be replaced with an integration
hose most important coniribution arises from points where the phase
T(x)=8 (x)+ 2, (x)+ 25 (x) and its analogs of (4.4) are slowly varying as
_f:f_imctions of x. We are led quite naturally to consider, for example

or
®_,
ax

(4.5)

denoting the supplementary dihedral angles relative to x with 8%, 82, 62, a
eartening result is that, since in any first order variation of the edges we
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may consider all angles as constants, we have as necessary condition for (4.5)
ol 02462 —m=0, (4.6)

having taken into account the phase (—1)= of (3.8). If we consider the other
terms in (4.4) as well, we find that the bulk of the contribution to the integral
may come only from those values of x such that

+ 0L+ 020w, 4.7

The conditions (4.7) have an immediate geometrical interpretation if we
ook at the diagram in fig. 8a. There one sees that by leaving out in turn
any one of the five points P,,..., Ps, the remaining points form five tetra-
fhedra Ty, ..., Ts which are just those appearing in (3.8). Note that there are
ten edges connecting five points in all possible ways and in fact there are ten
angular momenta appearing in (3.8) including x. As it has been long known,
if five points are imbedded into a three dimensional-Euclidean space, their
mutual distances are not independent. The explicit form of their dependence
was discovered by Cayley!) and can be written as

0 % Jt Jla s
.2 . . ,
ji. 0O 133 ]%4 J%s
.2 .2 - .
AV = jis Jas O J3a J3s
@yr=e e g T
1;4 J24 J3a Jas
. . .2 .2
J1is Jis Jas  Jas 0
i 1 1 1 10

-0, (4.8)

ik maad s

where j,, is the distance between P, and P,. It is crucial to understand that
(4.8) is in fact equivalent to (4.7). indeed (4.7) implies that the sum of the
internal dihedral angles n—@. around the edge x is a multiple of 2=, as
expected if the diagram is drawn in three dimensions. The ambiguity in the
signs of the angles arises from the different possible orientations of the five
involved tetrahedra, as exemplified by fig. 8b.

Therefore, the only asymptotical contribution to the integral comes from
the configuration of the diagram in fig. 8a and the like, which are three-
dimensional, i.e. from those values of x such that J (x*)=0. First we notice
that the range of summation is restricted to x>0 and, “a fortiori,” to
x20. Secondly, I(x?) is a quadratic polynomial in x? and it has therefore
two roots (x.)* and (x,)*. There are rigorous arguments showing that, if

T,, Ts are physical tetrahedra, ie. V2, VZ>0, then x. and ¥ are real. To

s it will be enough to note that, quite obviously, the smaller root x . cOT-

responds to the configuration in which P,, Ps lie on the same side of the plane -
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()]

Fig. 8,

23
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P,P,P; as depicted in fig. 9, while x. corresponds to Py,Ps being on op-

posite sides as in fig. Ba.
Since in general 07 (j=1,2,3) are not vanishing, or are equal to some

multiple of , only one of the choices of signs in (4.7) is valid for a given root.

Fig, 9.

1t follows that, for x=x., only one of the eight terms arising from the
decomposition (4.4), together with its complex conjugate, does actually
contribute to the integral. We cannot decide here which term contributes,
because this will depend on the values of the other fixed angular momenta.
Let us suppose they are such that for both roots 0l4024 0=

From (3.8) we have

o - 3
Y=Y - =@ [V (x} Va (x) V3 (x)]™° [T +e Rl PR G
96./3
X
where w=ate+d+a +e +d +g-+j+h Letus write now
x -+ 1 =RE a+i=Ra, e+1=Ry, d+3=Ré .. d +%3=RJY
(4.10)

5,0, ', & finite; note that the angles B, of the five

with R large and &, o, #,
n the summation on & is now

tetrahedra are independent of R. The spacing i
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'\ R 'a ici
nd, as anticipated, we may replace the summation with an integral on &

T

Y~ ——
96./3

2
E3

e—iﬁ(m_%) RZ fdé é{Vl (é) Vz(‘é) V3 ((f) —+ eiR[F(Lf)_ﬂ‘l’] + ¢.C.

(4.11)

?av'ltni used th'e .fact that w+x is integer; here I'(x)=RI (£)+1n. In the
12(1213 —><'30 th'xs integral can be computed with the steepest descent meth-
od 2%), which yields for an integral of the form

il

F o A W iRSE
K f g(&)e dé, (4.12)
with f and g real, the approximate resuit
1
7 ’“Z Y [RF(EE
& R = R!f”(ﬂfj)f g(é’_))e ! “[]; (4.13)

i
here £; are such that /" (&;)=0 and a<¢;< . In(4.13) the phases +1n must

. be chosen according to /7 (&.)= i
o g to f"(£;)Z0. If &, correspond to x;, since we have

[E"{f@_“ e
g

Ve find in our case

FE=T()—nt g@=EV©@) V() V(177
R a{0t 2 i

pr(= 20t Ot 0

il

al.w.z .computation.of F7(£) is out of question because of the lengthy and

ninspiring algebra involved. We rather take 72(x?), defined in (4.8

_pndent variable and write , e

|:64_(8; + 02402 —n)orr(x?)
ar(x?) ag_}

— 0; 02 3 _ _ :
]HE [0c 4 0%+ 0 — e = 0, (4.14)

(4.15)

f'(8s) = lim

[l

; {4.16)
_'gij}ipulation of determinants (appendix D) shows that

e =Ty @.17)
§=Cz

AN
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The evaluation of f(£3) is straightforward and vields

Rf (£5) F b= Q4 Qs + 7(d - 3. (4.18)
From (4.11)-(4.18) we obtain
1 1 . .
¥ _ el(Q4+Qs) T 61{94*95) + C,C.] (419)

PRI AAK

Y =~ (]Eﬂ?@)j cos 94(1—2;1/5—)% cos 5,
which is in obvious agreement with the straightforward use of (1.4) in the
Lh.s.

We indulged somewhat more than strictly necessary on the proof of the
Biedenharn-Elliott identity in the asymptotic Hmit, because we felt that the
mechanism involved is iHuminating and more general than shown by this
case. We do not discuss whether the other identities of Racah coefficients:
(A.6), (A7) are satisfied by (1.4), since these proofs follow quite easily from
the stationary-phase method. The same procedure can be extended in prin-
ciple to the computation of asymptotic 9j-symbols.

5. A formal analogy with the WEKB method

In the previous section we strived to provide as many as possible independ-
ent checks and counterchecks for the validity of (1.4) in the region
A(V*>0). As stated in our Introduction, a complete description of the
behaviour of a 6j-symbol for large angular momenta must include of
necessity a similar formula for the region B(V*<0) and makes it highly
desirable to have one for the trapsitional region > =~0 as well.

The guiding idea in this section is a formal analogy with a WKB approx-
imation for the solution of a differential equation. This analogy was prompted
by the actual existence of a differential equation at least in the 1+ 142 case,
where in fact the symbol can be expressed as a Jacobi polynomial.

Unfortunately we have not been able to derive a single differential equa-
tion valid for unrestricted large parameters, with the possible exception of
the transitional region, Our disappointment is somehow mitigated by notic-
ing that, after all, we peed a differential equation only in order to fix unam-
biguously the prosecution of (1.4) through a transition point. This we have
achieved and the resulting formulae satisfy properties which are similar o

the ones listed uader i, ii, il in section 4. However, it must be stated that 8

the WK B analogy is just a formal device which cannot be accepted as a
proof.
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. Before proceeding further along this analogy, a more detailed investi
thfl of the region B is necessary, From (B.3) we see that if V2:6 aia(;
(1)—I<h; 1 i » 70, then the anglles 8, are all multiple of . Since we always choose

< 6, <7, we have that either 8, =0 or f,,==; the ambiguity can be settled
by means of (3.22). Here, as in the following, we always assume that th
areas A, are represented by positive square roots of radicands like (B 1e
Because of the conditions satisfied by angular momenta and takin(iﬁt).
account our definition of j,,, it is easy to see that these radicands are igdeez
always non-negative and may vanish only if ¥?=0, in which case (see foot
note 122), at least one angular momentum assumes a non-physical value _

If 2 =0, the four vertices of T lie in the same plane; Let Q be the con.
Plane set generated by the four vertices. Depending on their relative (\)IE'X
tion, Q may have three or four edges {(see figs. 10 and 1}. As the readt:;J c:r;

easily check, the rule is then: == for the edges of @ and 8,,=0 for the

hers. We may use th A
g y e symbol 00 of© denotetheset8,,=68;;=01,=m,

)24=0,3=0. The only possibilities are mrml Jr00{ )0 0=
> 0 0 0 > 0 o [ - 0 N

._0 an 0] In0x] 0nn
0___.1?., 2200 %0 2010 % % . The subsets with some A, =0 lie on

o.l_;.ndary of the above sets. For instance, the case j,,=f;5-+/ji4 15 the

On boundary of 700 J0n= )
¥y o 0200 x % and, in fact, here 8,,, 0;,, 0,4 are

<
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If V2 <0, then the angles 6, are all of the form nr +i,,. Because of con-
tinuity, it foliows that Re 0, are constants in B whenever [ ], 4,70. There-
fore we may subdivide B into non-overlapping regions, all points in the same
region having the same values of Re . If we let ¥—0 and Hﬂ: 1A, #0, we

see that lim Re 0, =0, (V=0) so the value of Re 0y, is determined by the
Y0
limiting process for V-0 and is the same as listed above. We may subdivide

000 a0
. TR
in _B( ): Red;,=Re O ;=Relj =7, Re 0,,=Re 8, =Re 03,=0;

. . i 0 .
B into regions B(n n), B (n m ) etc. such that we have, for instance,

000
it is also convenient to use the following abbreviations:

T 700 CO0n 0x0
B,=8B B B B .
! (OOO)U (Oﬂsn)u (?’ETEO)U (TL’OR)
AN 7 0n Onn
B, =8B B B .
* (TCTEO)U (TEOTC)U (Oﬂiﬂ)
These regions are not closed, for they have common boundary points in which

some A,’s vanish. As anticipated in (1.7), in every such region we define a
phase function @ as follows '

4
&= Z (jhfc - %) Re Qhk .
k=1

Forphysicalvaluesof thean gularmomenta, ®isalways an integer multipleof 7.
We fix now the value of all parameters but one. Without loss of generality
we may always choose @ as variable and, in order to stress this point, we use
x instead of a. We do not restrict ourselves to physical values of x and of the
remaining parameters in order to retain some, albeit nominal, freedom in
the final results. If ¥2{x;)=0 we have
Q(x,) =@ —n approaching B,
. (5.1
Q(xz)=d +4n approaching By .

In appendix F jt is shown that for x—=x5:

9 V? .

2 — approaching B;,
e

g-oG=l 52)
9 y? : .
—5 approaching B, .

[
h=1

abc '2_1 4 -
e sfT (,.Ul“‘") "
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It follows that in the neighbourhood of a transition point we have
{a b c} 1
o~ ——— CO0S
de fi J12av

ob?fiously this formula is incorrect if one gets too close to the transiﬁén
points, .We notice however that, as it stands, (5.3) is the WKB asymptotic
approximation to the following differential equation (see (G.6)):

d d 2
7 = 37 Vi, (5.4)
d(V)d(r) 411 4 ,

where the independent variableis V, [l A, being treated as a constant 24),
The general solution of (5.4) is (appendix G):

3

2f[ +@®—in\; (5.3)
AJJ‘

h=1

9 v 9 v
l/l ~ ¥ Cl.I% 5—4—— + CZJ—%— i ’4_V (5.5)
H AII . o 1_[ Ah o
h=1 =1

and the one which joins smoothly with (5.3) for large values of V20 is:

, .
X [cosPAL| — (347[/)% +sin@ Bi| — —'(:ZL)ZA l
(4 I1 A,,) ' (4 I1 Ak)a
=1 E=1 J
(5.6)
in terms of Airy functions®3). We assume (5.6) to be the correct asymptotic
f:o'l.'m of the Racah coefficient in the transitional region. The soundness of
thi.s'assumption is of course at this stage purely aesthetical. However, our
njecturff is borne out by comparison with published tables (see tables ,1—4).
: _ccordmg tg the standard procedure, we may continue (5.6) into the
gion B; he‘re the resulting formula in the neighbourhood of a fransition
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For large values of |V|? this function joins smoothly with

e AL LU B
de f V)

where Im Q=Y =, Im 0. Choosing conventionally in region B: V=i|Fl,
the imaginary part of 8, can be retrieved by means of the following formulae:

9 av? .

- - i 2
cosh (Im @) = — cos(Re by) aA, e hstker#s, (322a)
sinh. (Im 8,,) = cos(Re ) ~—3 T V], h#k. (1.5a)

hk i 2 AhAk

According to (5.8), the §j-symbol would be representen:l in region B by a
superposition of decreasing and increasing exponentials; hm'vever, .the
coefficient sin @ of the increasing exponential vanishes at the p.hysu:al points,
where (5.8) reduces to (1.8). It turns out that (5.8) is numerically accurate
when applied to physical angular momenta. : ‘

It is worth noticing that the coefficient cos &= (—1)** of the decreasing
exponential gives instead a determination of the sign of the 6j—sy1'nb01. This
sign is in complete agreement with numerical tables, as well as with the one
obtained from the limiting case of a stretched tetrahedron where one edge
reaches its maximum permissible value. As an example, let a=b+c; from
(A.4) we have:

b+ch ¢ ote
Sig“f{ i e f}=(— prerets (5.9)

Since b+c> x. —4, it is a simple exercise to see that if @ increases through

. O0ra= fn 090
x., then we enter either one of the regions B 0xn) B P

T 0

O0r = 4B
is almost on the boundary between B 07 an 0
1

would be exactly on this boundary if: at+i=b+i+c+i, or a—b.—c=7
which is prevented by selection rules. Therefore our phase is @=
}r(b+ c+e+f)=n(a+e+/f) and it agrees with (5.9). . .
Further evidence in favour of (5.6), (5.8) is offered by the d1scussm'n of
the particular case: 2+1-+1; this analysis is carried out in appendix H

O) ; actually, it
7

where it is shown that the behaviour of (3.6) in region 4 as well as in Bisin -
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agreement with (5.8). We notice also that the arguments of the Airy func-
tions in (5.6), (5.7) as well as @ are invariant under R,

We have now a complete set of conjectured asymptotic formulae valid for
every range of large physical angular momenta, Numerical examples deduced
from these formiciae are shown in tables 1-4 and in figs, 5-7.

6. The 3n/-symbols

The problem of extending our results to higher 3n/-symbols is certainly very
difficnlt and we were not able to reach a solution within the frame of this
paper. Yet some of the intuitive arguments presented here provide fairly
interesting information about the general problem.

In dealing with 3nj-symbols where » is large the use of diagrams becomes
imperative. At first the diagrams, as in the current literature”), are just a
mmnemonical device in order to keep track of the growing complexities of the
symbols. They provide an information, which is purely combinaterial, on
how angular momenta are coupled in a given scheme. In this sense a very
natural language for diagrams is provided by combinatorial topology.

A diagram is essentially a shorthand notation for the expansion of a
3nj-symbol in terms of 3j-symbols. Let [D] be the 3nj-symbol corresponding
to the diagram D. [D] can be expressed as:

=y (4 BY (kY kYL 6.1
atm N My ) Nmy oy omy ) Ny omy ) \my my, o my )

where?):

lk B — i
() = D™ (©2)
D can be retrieved from (6.1) by means of the following rules:

a) D is a 2-dimensional combinatorial manifold.

b) There is a one-to-one correspondence between 1-simplexes (edges) of D
and angular momenta in the r.h.s. of (6.1).

¢) There is a one-to-one correspondence between 3j-symbols in (6.1) and
2-simplexes (faces) of D.

"The boundary of a face is the sum of the three edges appearing as angular
omenta in the corresponding 3j-symbol.

- We work for the time being with homology modulo 2, ie. we forget
about the orientation of the simplexes.

rom the general structure of [D] we see that there are 2n faces and 3n
edgesin D. We have no “a priori”* conditions on O-simplexes (vertices) and in
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fact they have no physical meaning. This brings in a certain amount of
arbitrariness in the construction of D which is lacking in the customary
definition of diagrams®) (figs. 12a, b). We regard as equivalent diagrams
those which yield the same symbol. Since D is a manifold, we may define its
Euler characteristic:

M=—f4+e—v+2=n—v+2,

where f, e, v are the number of faces, edges, vertices respectively. Since
M=0, we have v<nt2. For a 6j-symbol, M =0, while in the case of a
9j-symbol we have: n=13, v= 4 and M =1 according to the example sketched
infig. 11. When M =1 the diagram is the triangulation of a one-sided surface,

d

Fig. 11. Planar graphical representation of the 9j-symbol with triads (abe), (def), {ght).
{adg), (beh), (cf).

in our case the real projective plane. Since the sphere where opposite points
are identified is a homeomorph of the projective plane, it is possible to
exhibit the 9j-symbol as a double hexagonal pyramid as shown in fig. 12a;
here each edge and face are repeated twice and the whole diagram has a
centre of symmetry. We shall prefer this representation to the one given in

fig. 11.
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‘ I'n fact, in dealing with the asymptotic behaviour and with the semiclassical
limit of 3nf-symbols, we expect that it will be possible to represent angular
momen_ta as vectors and the coupling of angular momenta as the addgition
of classical vectors. 1t follows.that it will be convenient to think of a diagram
as a polyhedron imbedded into a 3-dimensional Euclidean space. It:g one

b

_._Flg. 12, Different three-dimensional diagrams for tﬁe 9j of fig. 11; note that the edges in
case a have the same length and direction as in b.

h a construction exists wi i
e eontaaton of the o ::rap:‘sm 1bed lengths of the edges, we shall speak
“An 11'1ter.esting phenomenon is that there are several different configura-
ns, with identical edges for the same diagram. This ambiguity is connected
H _the fz?.ct that there is uniqueness for a given polyhedron of given topol-
gy and given edges only if the polyhedron is convex. A trivial example is a
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pair of mirror-like right-handed and feft-handed tetrahe(dra. A less trivial
example arises already with the 9j-symbot and we expecft it to become mor'e
and more important for higher symbols. The technical reasons of this
multiplicity can be best seen in the 9j-symbols. Here the geometrical sha.pe
of the object would be completely determined if' we knew all the relativ_e
angles of all the edges of the diagram. Elementary theorems tell us that this
can be achieved if the angle we are {ooking for is the internal angle of some
triangle of which all edges are known ; this is true in particular for all faces
in the diagram. A similar attempt to compute, for instance, the.angle be-
tween b and f (fig. 12a) fails unless we know the length of the diagonal x.
In the particular case of the 9j-symbol it turns out that all angles can be
computed, provided we know this only missing length x; as we she'ﬂl see,
there may be in principle as much as four different configurations with the
same topology. . . .

Since the classification and the discussion of these configurations is rele-
vant to the asymptotic behaviour of the symbol, it is convenient to refine
the so far used language. We shall introduce the word diagra.m w]?en onl_y
the topological properties are considered and in doing 50 we 1dent1fy_ t.aqul-
valent diagrams. Configuration is instead a diagram with the addltlor}al
information about the angles needed in order to remove the above ‘flmb.lg-
uities. We may introduce the additiopal word orientation if a distinction
between left-handed and right-handed configurations is desired. '

For complicated 3nj-symbols the number of different colnﬁguratlons fo'r
the same diagram grows very rapidly. From our discussion .1t is clear that if
one gives the distance between any pair of vertices in the diagram, then the
configuration is completely determined. We cannot give here a general set of
rules which would allow one to compute the missing lengths. We fm.md,
however, that in the simplest cases it is enough to exploit the relations
among squared edges which can be obtained as follows:_ ‘
a) the diagram may contain quadrilaterals with opposite equal cdge§ ; in
this case the sum of the squared diagonals is twice the sum of the two differ-
ent squared edges, a known and elementary relation; .
b) since the diagram is smbedded into a 3-dimensional space, one can write
for any choice of five vertices the Cayley identity (4.8).

Not all these relations are actually independent. Once a comp@te and
consistent set of identities has been written, one finds a set of atgebraic equa-
tions for the missing lengths; to each solution of these equations we asso-
ciate a configaration.

We come now to the general problem of computing the Ipj-symbols.
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In the available literature?) explicit formulae are written for any symbol
with the aid of diagrams in terms of lower order coefficients, The diagrams
used in these previous works are not the same as ours; however it is not
difficult to translate one language into the other.

To this purpose we introduce another diagram £(D) which corresponds
to the familiar procedure of dissecting the interior of the polyhedron into
tetrahedra ; more formally, 2(D) can be conveniently defined as a 3-dimen-
sional combinatorial manifold with boundary D. We name cells the 3-sim-
plexes of . The edges, faces and vertices of & will be named external if they
belong to D, else internal. Let the set of cells be labelied by Ty, k=1, 2,..., p.

From the definition of the symbol [D], we know that it is a function of as
many variables as different edges of D. These variables take up integer or
half-integer values with the selection rule that the sum of the variables along
the boundary of any 2-cycle is always integer, We assume the function [D]
to be given by the usual Racah formula (A.4) when D is a tetrahedron. In
what follows we shall give a sketchy account of a set of rules which allow
the computation of [D] for any D.

In order to evaluate [D], we first construct a given 2(D). We associate
variables x;,i=1,2,...,¢ to all internal edges of Z(D) and variables
I;,j=1,2,... r to the external ones. In this way, to each cell T, considered
as a diagram, we may associate [T, ] which is clearly a function of the inter-
nal and, possibly, of the external edges of 2 (D). Then we form the product:

Aoy %)) = kU [T (= 1) f[l (2%, + 1). 6.3)

We found so far no combinatorial rule to construct y, which applies to any

diagram. If D and @{(D) are homeomorphs of a 2-sphere and of a 3-ball,
then we have in general:

q
x=2 0 =2)x;+ %o,

=

where #; is the number of tetrahedra belonging to x; and y, is a fixed phase

“chosen in order to make y integer. For simplicity we shall limit ourselves

1o this case. Let us now consider the sum over all internal variables
S=Y .2 Ax, ... x,). (6.4)

If there are no internal vertices, the sum is finite and S =| D]. Onthe contrary,
there are internal vertices, the sum is infinite but it is still possible to
normalize it in such a way to obtain [D]. When the immediate goal is just
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the computation of [D] with the simplest possible method, then there is no
need to introduce this additional complication, for one can always find a
(D) with no internal vertices. However the more general case is relevant
in suggesting a formal analogy with the Feynman summation over his-
tories?6) in connection with the theory of relativity; we shall discuss this
point later.

Coming back to (6.3), (6.4) and supposing that there are no internal ver-
tices, we may attempt to evaluate the summation in {6.4) using the same
methods already tested for the Bicdenharn-Elliott identity (section 4). In
this case we shall replace each [T, ] with its asymptotic behaviour according
to {1.4). Moreover, we shall split each cosine according to Euler’s formula.
The function 4 will then appear as the sum of 27 pairwise conjugate terms.
It is also convenient to replace each factor (— 1) with exp.[+in(r—2) x].
This procedure, which is clearly correct only for integer x;, can be easily
extended also to half-integer summation indices. Therefore A will contain,
among the others, a term of the form

1 P

[] (2x; + Dexp {i [(Z G’j) farpj+2'rc] xj}. (6.5)
i=1 k=1

As before, we may try to replace the summation with an integral; we expect

that the most important contributions to the integral will arise from the

points where the phase is stationary with respect to the g variables x;. bm-

posing the stationary phase condition, we find:

ik}
S (- 0%) = 2=, (6.6)

k=1
which means that the sum of internal angles around x; is just 2z, A discussion
similar to the one carried out in section 4 brings to the conclusion that
(6.6) implies the existence of a configuration, in the sense defined above, im-
bedded in a 3-dimensional Euclidean space, where the internal and external
lengths are well specified. Because of the lack of internal vertices, the inter-
nal edges connect external vertices of the diagram and in fact they are suffi-
cient to specify the configuration completely. A similar discussion can be
carried out for the other 2°—1 terms. In this way we see that the final result
will be a sum of contributions from each configuration. We do not know of
any simple rule to compute the general form of the partial second derivatives:

] Li 9’;.] j0x; (6.7
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needed in order to carry out, up to the end, the evaluation of (6.4). This lack
of knowledge stops us here short of the final resuft. However the above dis-
cussion shows already that the study of configurations is certainly relevant
to a complete understanding of the semiclassical limit of the 3nj-symbols.

As anticipated, we point out a curious connection between our asymp-
totic formulae and a simplified quantization “a la Feynman™ occurring in a
3-dimensional Euclidean theory of gravitation. The classical counterpart of
this theory is trivial because the Einstein field equation for empty space

RM\’ - %Q‘MR =0 (6.8)

implies that the complete Riemann tensor vanishes, i.e., the space is flat.
However, the connection we point out may be relevant for further generaliza-
tions to less academical cases.

We begin by discussing the sum (6.4) when there are internal vertices. As
stated, this sum is infinite, but it is rather interesting to see how this infinity
actually arises. For simplicity we restrict ourselves to the case when D is a

tetrahedron and there is only one internal vertex P; (fig. 13). In this case
(6.4) reads:

S= Z (2x + 1) (2_]: 4 })(22 + 1) (2; + 1) (- i)x+3=+z+f+a+b+c+d+e+f %

xyaf
abel{feal{dbflfced
%
{x y z}{y z t}{z t x}{z X y} ©9
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having chosen yp=a+b-+c+ d+e+f; the summation is carried out on all
x, ¥, Z, ¢ which are compatible with the selection rules. Without 10§s of
g:ancrality we may suppose x integer; using (3.8) the summation over yields:

ab c)?
S={Z i ;}§2(2x+ NEy+ 1)z + 1) {x ; z} (6.10)

and from (A.6):

s=17 b e iﬂw—_(Zx&-l)(Zy—l—l),
de flom2e+1

is a triangular delta which is equal to unity if x, y, ¢ satisfy

(6.11)

where 8. : :
triangular inequalities and zero otherwise. Since
x+tc
> (2y-|—'1):(2x+1)(2c+l),
y=tx—cl :

we have

52197 LS axr 1y, (6.12)
de flx=o
which is infinite and correspondingly meaningless. Let us limit the summa-

tion on x up to x=R, with R large; in this case we find

R 1 4nR>

#(R)= Y (x+ e

(6.13)

This result hints that we may write:

b ¢ - -1 _yetbrerdtetfrxtyIHl o
1= - m @) T

R—+oo X, .2,

x (2x + 1)(2y + 1) (22 + 1) (2 + 1) %
abec e a dbf}{ced}
X{Xyz}yzt zt X i xy
In fact we have that, for fixed x, the summand vanishes if z>x+ b, y>x+c,

t>x+d so that for x<min(R—b, R—ec, R-—-d} the .lin.1it'ations ¥, z, t<R
have no weight, Therefore we assume that the above limit is correct and ex-

pect that in general [D] is given by:

[D] = lim (Z(R))™" };R‘..szA(xl,..., x,)

R—a X1

(6.14)

(6.15)

where P is the number of internal vertices and A is defined by '(6.3). -
Now let us suppose that the number of vertices and edges in D and in
@ (D) is very high, Let also the complex Z(D

} approach a differentiable -
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manifold .# with boundary D. According to a discussion carried out in a
previous paper by one of us2%), the sum Y 1_, [Y'F2 | (n—09)]x; approaches
the integral 8z (.4)=1{,R dV, where dV is the volume element on .#
and R the scalar Riemann curvature of .#. We sce therefore that the positive
frequency part §* of S in some sense looks like:

1 g
“ar | T,

ot =D

5t (6.16)
where the summations over the varjables x; have been interpreted as an inte-
gration over all the manifolds . with fixed boundary D. The measure dp
is here not defined in any precise mathematical sense since alf the discussion
carried out so far is clearly heuristic in character. In this form, S strongly
resembles 2 Feynman summation over histories with density of Lagrangian
& as in a 3-dimensional Einstein theory. In a more conventional 4-dimen-

sional theory with pseudo Euclidean metric, the corresponding summation
would be?8):

. .
' S(zl,zz):fdyexp (1fR d4x\/__g-)’
Zy

the integral on the coordinates being performed in the slab between the space-
like hypersurfaces X, X,. The other terms, other than the positive frequency
part, are related to different orientations of the tetrahedra T; and have a
similar interpretation, although their precise meaning is still unclear. Tt is
plausible that in the transition to a smooth manifold .#, they will give no
essential contribution to the final result,
Finally we report an interesting conjecture over possible extensions of
Wigner’s result for the ¢j-symbol. For simplicity we limit ourselves to the
. 9/-symbol, further generalizations being obvious. In the diagram of fig. 12a
- we keep the vertices Py, P,, Py of one face fixed; in this way we fix also
a, b, c. It can be easily realized that to determine D completely it is enough
to give the points P, and P, in fact, from P,, Ps; we deduce the symmetry
centre 3(P; +P5) of D and from it all the remaining vertices. We may use as
coordinates for P,, P5 either their six Euclidean coordinates r,, r5 or the six
f_@’.:maining lengths d, e, f, g, h, i. Our conjecture, suggested by (3.5), is that:

abecl

!def ~CZ O(rq, ¥5) l

lg h i a(dz’ 82’ fz‘} gza hz: iz) ra=rq), gg=psk)
k=1

here the summation is carried on all the M different configurations ¥{®,

(6.17)

. (6.18)
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# labelled by k, which correspond to the same values of the lengths appear-
ing in the symbol. Cayley identity (4.8) when applied, for instance,. to
P., Ps, Pg, Py, Py, yields a fourth order equation in x*, which means that,
in general, there are four different contributions to (6.18). The constant C
can be determined by evaluating

N= 3 (2a+1)(2b+1)(2c+1)(2d+1)><
abedef <R ‘ 4 b c 2
x(2e+ )@2f +1id e f (6.19)
- g hi

by means of the orthogonality of 9j-symbols6); following a procedure sim-
ilar to the one which led to (6.12), we obtain R=(4R*)% On the other hand,

we have by means of (6.18)
‘ ' abel

9t~ f d(a®)d(p?)...d(fD){d e f ~
) g I i
~ 1C d’*ry f ¥, = 1CERRYY,  (6.20)
lral <R lesl <R
from which is follows: C= 2(%)” 2. The inverse of the Jacobian appearing in

(6.18)canbe evaluated easilyin terms of volumes oftetrahedra ; we hope to pre-
sent elsewhere more detailed resulis for this as well as for higher order symbolis.
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Appendix A. Racah algebra “in nuce” for SU(2)

. 'This appendix will be devoted to a brief summary of formulae and properties
of coupling and recoupling coeflicients, as well as of matrix fepresentations
for the unitary unimodular group in two dimensions 29, '

The 3j-symbol is defined by4):

b+c—acta—batb—c

abec
=| a—« b—8§ c—y |=
<O(‘B}’) a+a b+ p c+y
=(~- 1)“”"""[A(abc)(a+oc)!(a-oc)!(b+ﬁ)!(b—ﬁ)!(é+y)! X
% (e =P (- l)x{x!(c—b+oc+x)!(c—a_ﬁ+x)! P

X(G+b—C‘—X)!(ﬂ-"OE—X)!(b-F,B—"JC)!]_I, (A1)
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with .
(@a+b—c)(b+c—a)(c+a— b

A(abe) =
(a+b+c+ 1)

(A.2)

The positive integers or half-integers a, &, ¢ satisty triangular inequalities:
la—b|<c<a+b etc. and -+ f+y=0; a—|e} etc. must be natural inte ers'
If anyone of these conditions is not fulfilled, the value of the symbol if as.
sumed_ to be zero. The 72 elements1) of the symmetry group R, of thi;
coeﬂ.iment are the permutations of lines and/or columns of the squ;re 8
bol in .(A.I) (which yield the phase (P)° with S=a+b-+c and P= +1 yin 1
according to even, odd permutations), and the exchange of lines ;vith
columns. For unitarity and orthogonality of 3j-symbols, see Edmonds16)
From the definition (3.1) it turns out?) that the 6&/-symbol ﬁs 1 in
terms of 3j-coefficients by: s

a be ltetf+dtet

= —_ hre ET P
deff =Y x
Jeeg

(o) DG snCs) o

Racah’s treatment of this formula ) yields:

2 [abe 7
; {d . f} = {A(abc) A(aef) A(cde) A{bdf)]F x |

_xzx:(—1)"(x+I)![(a+b—}—d+e—x)!(a+c+¢]+fmx)lx

x(b+c+e+ f—xPx—a—b—cP(x—a—e—f) x
x(x—c—d—e)l(x—b—d- " (A.4)

‘The symbol is assumed to vanish if anyone of the triads (abe), (cde), (aef)

df ) does not satisfy triangular inequalities. In addition to the well known
mmetries of the associated tetrahedron (fi 2
! ' g. 1), the 6j-
less evident symmetry15): ) roymbol has sl

a+b—c btf-d fra—e
3-{abc}zd+b—f b+c—a c+d—e
de ff la+e—f e+c—d c+a—b
: d+e—c e+f—a f+d—b
2{a%(c+f+e_b) th+e+f—¢)
difc+ f+b—e) -}_~(b+e+c~—f)}’

(A.5)
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i i is 1 i 4 elements of a
i i his coefficient 18 invariant under the 14
e e o lines and/or columns of

i i f
roup R, which correspond to the permutations © colu ‘
%he g ><42 pattern in (A.5). In addition to the Biedenharn-Elliott identity
(3.8), the 6j-symbol satisfies also the following relations3%):

abx)fabx] _ O A6
};(2x+1){d e f}{d e f’}fzfm’ 0

a b x dexﬁaef AT

which i8 proportional to the transformation matrix

ioner’s 9j-symbol?}, is given i
Wigner's 7% ling schemes of four angular momenta, 18 given 1n

between different coup
terms of 6j-coeflicients by:

bporo i IR

g hi
Its known symmetries are formally the same as those. mentioned abovgofr(;{
the 3j-symbol, with S:a+b+c+dj\-e+f+g 4h+ E For a mforz
prehensive account of relations involving t}.lese coefficients, see ret. ©. o
According to the conventions and notations of ref. 30-f0r bas:lstvec ,
angular momentum operators and Euler angles, the rotation operator

Py —ia¥z .1 Pr -irfz .
Blap) = e T ¢
hich can be

has matrix elements in the 2J-+1 dimensional representation W

itten as » o
. Dgﬁp(m,@y)z<JM11“>(ocﬁy)uM'>=e M ghe (B e M (AL0)

in terms of the real matrix: 4, (By= DS (080, The following properties

hold )
(DY (epy)] " = [0V (@] DOy — B ), (ALD

; W) DUYE = By A12)

%D(iﬁw Df\ﬁf = Bppnrs % Dirrm Dyrrm MM (

21 an ke 5 ' 5 , 5M "
’ JIT UMM 2R
8—13 j\ da j d?j‘ dB sin iB DE\‘Rﬁh(dﬁv) D%fj;x)'Mz' (mﬁY) = 21 + 1
" 0 o 0 (A.13)
in addition to the symmetry

(A.14)

Mt I
P = (= DM D, e
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In general?)
X . =M+ M) - MY WE
= (J-M-x)(J—M —x)x(x+M+ M)
X(COS %ﬂ)Z,_M_M'_zx(Siﬂ %ﬁ)2x+ﬂI+M', (AIS)

which leads in particular to

1
@ (L — M)! z
dio (B) = (- DM |:(L+W)_' Pi* (cos B); (A.16)
the following symmetries are very useful
i s (B) = (— 1M aY, _ (B) =
=(=D)"ERu B = (= DT w (= p). (AIT)

The connection with Jacobi polynomials is given by

4Oy py-ne | O MY — M) +
0 (B) = (— 1) [(HM')!(J_M)@]

% (cos LAY M (sin 1p)M M P ML MM (605 Y. (ALIR)

- Appendix B. Elementary geometry of tetrahedra

-_Heron’s formula for the content 4 of a triangle of edges j,, j,, j, can be
“written as .

a2 , , , . . , R , .
A =151+ +is) i i~ )y —Ja i) (—js +i2 +i3) =
0 i1
+2 a2
1 |1 0 j3 1
w20 g B
1 1 1 90

We have already given in (1.2) Cayley’s form for the content ¥ of a tetra-
1edron. Performing in (1.2) the derivation of V? with respect to (j,,)* and

enoting the (7, 5) algebraic minor of the Cayley determinant with C,,, the
ition 51) ”

— C,, = 164, 4; cos 8, , rEsS#EhEL (B.2)

S;-:f;_(3'22) 3 in (B.2) A, k,r, s are any permutation of 1,2, 3, 4. Using
22) and the obvious identity

i\AhAk sin by, = 3V (B.3}
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we obtain the differentiation formulae

dg!lk ikkjrs
——— = htk#r#s (B4
T 6V )
Looking at fig. 1 we see that
V = tji2i23 13 810 @Pua 10 @24 ?iﬂ 012 (B.5)
or
i
1 COSyq €OS P4l
V = %§j12J12J23 1608 P14 1 COS Pay (B.6)
COS P34 COS P3a 1.
since CO8 Q44 ="COS{ 4 COSPgq— SiNPyq SINP24 cosf,. Now, if we define
with reference to Py _ :
204 = By + 013 1 023 B.7
3, = [sin a4 sin (04 — 0,,) sin (o, — 83) sin (o4 — 0,.01%, (B.S)
then it follows%):
25, = sin 0, sin Oz sin oy = Sin 05 sid 0,5 i Q34 =
- =gin @y, sin 03 510 @ras (B.9)
and
T, 48 3y, = 8in o, si0 (04— 023)s ,
T tg 3y, = sin g, sin (04— 813)> (B.10)

Tate %(934 = sin a4 sify (0'4_ - 012)'

It turns out that K=2X,/4, is independent of A; therefore, from (B.5), (B.9):

-

4 3

V:%(]_[ A,,) K*. (B.11)
=1

Appendix C. A summation property of Jacobi polynomials

The purpose of this appendix is to prove the relation

LZO (2L + 1) d%ﬂm(ﬁa) d%Ma (51) df\ﬁm (182) =

0@ (3 '
e (Zme). @

where @ is the step function used in (3.13), while the angles B, 6; (i=1,2, 3)
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Fig. C1.

are shown in fig. C1 and
1 cosfi; cos B,
#=|cosff; 1 cosfl.
cos i, cos i, !

The addition property of the rotation group yields:

(Ly
Dsine, (“3ﬁ3?3) == g, Dg\]f.)M3 (052.32'}’2) D%—;M; (0(1181)’1):

T

from which, using unitarity

D(L) _ (L k
MM (eiBiy1) = ; DM3M2 (ce3B373) D%fm (@28272),
{L) b
Dt s, (052)82?2) = 2 Dfmﬁﬁl (051131%) Dg;‘}M (“3.833’3)
i 1Mz *

.By exploiting (C.3}{C.5) for low values of I, we obtain
.cos fi;=cos fi;cos f, —sin §,sin f,cosd;, i#j#k=1273

- sin fyfsin §; =sin fi;fsin 8;, i#j
Sy=0;+7,-

dy=wy—oy+m, d=y, —y;—7,

y means of (A.13) and (C.3} we find

L 2x n
2f d?zf dp, sin f8, DJ(\IEL)';}; (o2 f272) Df‘li"zMz (aaB373) =
0 o

8n? 5
5 (L)
L Omoary 5M3M3' Difon, (‘11}31'}’1);

T 2L+ 1

45

(€2

(C.3)

(C.4)

(C.3)

(C.6)
(%))

(C.8)

(C.9a)
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(A.10) and the reality of functions diy. give

j de; j a7, j 86 sin i cos (z ) 50, (B2) A58, (B) =

(= MM g, (B, (CIb)

2L + 1
We notice that, once &, fi, 71> B2, 2 have been fixed, f; and &, (i=1,2,3)
are independent of «,; therefore:

2% T 3

J dy, j dp, sin B, cos (Z ) %Lm (ﬁz) dgv’szz(Ba) =
=1

0 0

2L+1( MM @Ry (B (€10)

Going from the integration variables f,, 72 to cos f,, cos 3, we find:

) _(npyrat (C.11)

ﬁ(cos B,, cos [33)
and

+1

j d (cos ﬁz)j d (cos f4) - —(—— cos (i ) A, (Ba) %

-1

x difhe, (Ba) = (DM AR, (B, (CI2)

2_L +1
having noticed that a given point of the integration domain in (C.12) corres-
ponds to two different points in {C.10). Since by means of the orthogonal
polynomials dif),. we can define the following expansions:

AL +1 2K 41 a0

(L7 ¢
fM;MzMJ'Mg'(ﬁs B’) = _r A f Mle(ﬁ) 1M1'Mz'(ﬁ ) >

L, L

(C.13)
with coefficients:

+1

.&Wwwzjdmwwﬁ@mmmmmmmﬁw

B CdE () d (B),  (CI4)
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which are non-vanishing only if L > max (IM,|, M,|), L' > max (|M{|, |M,|),
we have from (C.12)

@gi:@cos(i M(S) LM =

=3in LZO (L + 1) digh, (B1) di)ar, (B2) diclar, (B) -

The symmetries {A.17) Iead us to (C.1).
In order to complete the proof of (3.13), we have just to recall (B.6).

Appendix D. Invariance of 2 under R,

It is straightforward, though very tedious, to verify that the volume of T is

invariant also under the symmetry (A.5). This can be worked out by ex-

panding (1.2) and replacing j; 3 with $(j,4+/24+/23 —J(3) ete. Incidentally,

we note that in the same way one can check also the invariance of | [ 4,

under R,. Here we prefer to sketch how thie symmetry of €2 can be proved.
Let us multiply egs. (B.10) among themselves. We have for instance

(sin 04)" = X418 3014 t8 1024 18 3034 (D.1)
then choosing for example the first of (B.le, we have
[sin4(0,2 + 015 — 025)F = 24 tg 3014 cOte 32, cOtE 303, (D.2)
In order to compute the r.hs. of (D.2) it is convenient to introduce, with
reference to fig. D1, the following notations
g1 =Jiz Y Jia Fiias g2 =Ji2 tjaa o

, , , , , , (D.3)
43 =J13 *J23 TJaa> Ha=J1atjaat+laas
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Pia=Pas =12 +J1a T s 4 jags Pi3 = Paa=J12 T jia i + 235

5 = Pag =J1a +Jz2a T 1 t 233
as well as the two patterns

=G4y Pis— 41 Puz— 4 T
Pia—4q: Pi3— G2 Piz—4d2 42

443 Pi3—493 Pi2—4s 43
Pra—da Pi3—ds P12 —qa dal
04— 025 03— 034 05— 034 0‘1T
63— 014 04—03 01— 02
oy —ts 0y~ 54”01.2 T3
g, 825 6,813 03— 01, 04|

(il

st

1 =
"2"9.91 =

We note that from (B.11)

Z, 9 VP
K= o = 47_
¢ Hl Ah
h=

$ince, for example

(1’13 513)(1-712 ‘12)
tg 544 = s

q4 (Pm - '34)
(12.2) becomes

cos (045 + 0y — 023)=1- 293212 [(pys — ¢} %

X (P12 — q1)4q:(P1s— 42) (P1a — g3) (Pra —

and generally for s#7=1,2, 3, 4

cos 9, = 1 —22(3N*V? {(12‘[1 r) (ill rm)}# 1 (ra)

which gives, correctly, for a fiat tetrahedron, 9,=0or Y,=2n.
It is easy to check that, under the symmetry (A.3)
di=0s, d2=41> d5=4a, da=ds}
Pia=Pi3> P13 = Pia> P12 = Pi2»
which, taking into account (D.5), (D.7), entails for instance
cos (8, + 015 — 033) = cos (615 + 013 — B23)s

cos (fy; + 043 — ;) = cos (014 + 020 — 812),
cos (05 + 053 — 815) = cos (01, + 015 — 023).

(D.4)

(D.5)

(D.6)

44)]_1

(D.7)

(D.8)

(D.9)
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Let us suppose the tetrahedron to be almost regular; asymptotically, this
property is not destroved by the symmetry (A.5); in this case: 0< 6, <in
and similarly for the transformed 8;,. Moreover, looking at fig. D1 we see
for example that 8, ,, 8,3, 6,4 satisfy spherical triangular inequalities; there-
fore 059, <n, 03, <n Then from (2.9} and similar relations, we obtain

B3 =304 + 054 + 05 — 03),

014 =4(01a+ 023 + 025 — 014),  012=012,
0’24 = %(913 + 023 + 814 - 624)>

033 = ‘11(014 + 054 + 015 — 923)» B34 = B34

(D.10)

We conclude that (A.5) induces the same linear transformation on j, as
well as on 0, the unitarity of this transformation entails the invariance of
Q=3 tjm Oy +3m under R,. Finally, the constraint 8, <}n can be dropped
by invoking analytical continnation in 8.

Appendix E. Evaluation of [3(6, +02 +02)/0(x?) 2= (x2y

According to (4.16), first let us calculate 81* (x2)A(x?)] 22 (yny2- Write (4.8)
as follows:

C=c(x*VP+c,(x) + ¢ =0, (E.1)

where —2*(4!YI*(x*)=C; then the solutions of (E.l) are obviously

(x.)? = -!-\/cI 4c0c2—c1
2

. E.2
2, (E.2)

where ¢, ¢y, ¢, are determinants extracted from C which, for the sake of
brevity, we do not write explicitly. Since the tetrahedra T,, T; are supposed

~ to be physical, it follows (x3)*>0. Then

dC S
I:(Q] _ =4 \/61 — deoe, . {E.3)
a(x ) x2=(xz)2

_From known properties of determinants32), it turns out that

3(ch — dege;) = 2°(3)'V2V2, E4
erefore
P (x? ViV,
() g (E.5)
6(36 ) x2=(xz)2 16

L order to evaluate 0°1%(x*)/0 (04402 +02)] y2.= (xay2» SUPPOSE to imbed the
plex Py, P,, P,, Py, P5 of fig. 8a into a 4-dimensional Euclidean space.
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The content I of this simplex is ,
x0 0 O

0 hyy hya has (E.6)
0 hay hyy has
0 1’13] ]'132 .’133\

@1 =

where fy 5, hap s (G=1,2, 3) are the components of the distafxces from
PP, P: to x. The direction of x has been chosen as the first axis of refer-
12 Ed v

Fig. E1.

ence in this hyperspace. Let H be the volume of the tetrahedron defined by
hy, By, By (see fig. E1). Then we are led to the simple formula

T=4xH. (B.7)

b

Now we notice that the angle between, for instance, k; and h, is n—62.
Therefore from (B.6) we have
§(H%) = 15 (R hshy)’ [sin 61 (cos 62 cos B3 + cos 05) 561 —|~2 i

+ sin 62 (cos 2 cos 0} + cos 85) 60 +

+ sin 02 (cos 6] cos 02 + cos 63) 862]. (E.8)

Since (B.8) must be evaluated when 8L 462+ 07=m, ie. when hy, by, 1y are

coplanar, we find

— i(H—z)— i = 5 (hyhyh,)" sin O sin 82sin 0. (B9)
8(0; + Qi + Oi) x1=(x§)1
Moreover, from (B.5) we obtain .
sin 0

I/t' = %h1h2h3x T +

i=1,2,3 (E.10)
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O
and finally, by means of (E.7) /

ol (x*) ang
6(6i + Hazc + 03) x%=(x%)? B 4 X xl:(—‘fé)?“

Relations (E.5) and (E.11) yield (4.17).

(E.11)

Appendix F. Evaluation of lim Q(7?)
Y20

The behaviour of © in the neighbourhood of a transition point deserves a
rather careful investigation. To begin with, let us suppose that we approach
the region B; as ¥2—0. In fig. 10 we show the notations which will be used
in the sequel; moreover we indicate with 4, B, C the internal dihedral angles
between faces belonging to a-+%, b+1, c+31 and with z—D, n—E, n—F
the corresponding ones relative to d+4, e+, f+ 1. Also the following short-
hand notation will be convenient:

Mpe = COS A, fyy = COS &y,
Mg =cCOS f, [l =COSE, [, =COSE, (F.1)
Map = COS Y, Hop = CO8 Pp, [y = COS (.
When P lies very near to the plane of the triangle P, PyP. and within its
boundary we have pp,=cos(5,+68;), 40, =cos(e, +2.) po=cos(p,+@,) and
A=B=C=D=F=F=0.Since a+4=(e+13) po+{f-+%) i, etc., we obtain
in general from the definition (3.15b)

Qe=nala+btet D+d+HY+{e+ DV +(f +1¥c,  (F2)
where

Heg = COS écn

¥y=D— By — Cyy, ¥p=E— Cltpo— Aplges (F.3)
VYe=F — Ap,p — By, .

- In order to evaluate © when V2 ~0, it is useful to exploit the following
. integral representation for ¥ ,:

Hbe
¥y= (1 - 62)u : (] + 2ptpaptead — Ha%d - ﬂfa - 52)% d¢, {(F.4)
1y

and similar ones for ¥, ¥.. Noticing that ¥, (i, = p1y,) =0 and using the
 relations

D ‘= arc cos {_,. Hpalleg — H‘bc Hea — HpaHoe },

(00 (e SR (BT
Hpa — Heallpe }
(1 — e} (1= )1

C = arc cos { (F.5)
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it is easy to verify that the derivatives with respect to p,, of both sides of
(F.4) are equal. Now let us put . :
L 2ppattead — 12— i — &= (€ i) (oe = 6 (F.6)

where p;, is the value assumed by (1, when the tetrahedron is flat with P
outside P ,PyPc. In this case a= |8,—a,| and pl > up. Inthe neighbourhood
of pye= Hp. we can approximate the integrand of (F.4) as follows: ‘

o \ : : 2 (1, — 10

— kS Hpe = Hbe N 01
P J (1= &) I(E — o) (e — )T €~ 3 Tb o (e — #oe) s
o ' O - (#bc) )

Hoe o - (FED
and using (F.6)
IPA — %(!“"hc - ugc) [1 - (-("!.(b)c)zj_1 (1 + znub.rlﬂcd”hc - iu.'?a.d - #cz'd - Flf%c)% . (FS)

Since pp.— Hpe =2 sin (e +8,+0,) sin L —a+0p+8.)~ —(—8,— 9.} sin o,
we obtain from (F.8), (B.6), (B.5)

6V

(7b+_§)7(c+_—‘2) @y (sin o) "% =

~ % (8, 4 8, — a)sin o, 8in C. ‘ | (F.9)

lPAf:%sinoc(éb+5c—°f)

If I is the distance of P from the plane P,PzPc we have also
(d +3) ¥, = 3h(5,+ 5.~ ). (F.10)
Therefore from (F.10) and similar relations for ¥p, ¥. we find
Q:ﬂ(a+b+c—%)+%h(2n—5-g—(p). (F.11)
Our result (E.9) yields in the neighbourhood of V=0

Vo e [(d + D) (e + D + )] sinsinosing (n =5 —2— @),
(F.12)

having taken into account the different definition of 8, &, ¢. Using the pro-
portionality between / and V, we obtain finally from (F.11), (F. 12)

4 -1
Q:n(a+b+c:w£t)+%V3(H Ak) : (F.13)
L -

In a similar way, when we approach B, as 7250, we find in the case corre-
sponding to fig. 1

d -1
Qun(atb+dret)—% 3(HA:«) : (r.14)
J=1 ’
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Appendix G. WKB approximation for £’ (0)
et us recall here the main features of the WKB solutions of
d’g

wizthout discussing their degree of approximation3?); in (G.1) Q*(z)=
2%(2) (z—2,) (z;—2) with z; <z, and 2°>0. We know that the function

1
2 /Tm ¢, N\
zsn ““(Z):n(l IQIlI) 8

x{msing L(Jlm ¢ |) 4+ cos(d4n —n,) K. (lm 1))} (G.2)
joins smoothly with

AN |
o) = () teosCin ) 5,0+ cosim =) 40,

Z, <z K27, (G.3)

() = fQ(é) &, 0=+ @, (G.4)

if we choose for z<z;: Q(2)=ilQ(2), [Im #;= [ [0 (&)| d¢; far from z,
we have ’

91(2) =~ (27[Q1) " * {2 sin 7, " + cos iy, 7™ N1}, (G.5)

!
ga(z) = (ﬂ:Q) cos (t; + 1y — 4m). (G.6)

Simitarly, gontinuity through z, can be achieved by means of

, 4t, g
gy (z) = (3@) {eos (37 + 12) Iy 1) + cos (3n — n,) J_, (1,)},
I, <25 2, . ‘ (G.7)
L) - [e@ac. 0@ =+ @, (©.)
'_< z, gs(2) = i(llg;‘z_l)z )

X {msin iy L (|Im 2,]} + cos(n — ) Ky (fIm ,])},  (G.9)
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choosing for

<2t 0() =112 umrzl=j|Q(¢>ldé;

behave according to (G.6), (G.5) with the

We note incidentally that, for in-
%Y.

for large |z—2,| these solutions

i : ty, M2
obvious replacements: #;—fz, 11 . .
stance g,(z) can be written in terms of Airy functions

1

g2 (2) = (:;Qi;)z {cos ny Ai(— ¥) + sin gy Bi(— y)} (G.10)

Ai(—y) = 1y [J—J,-(tl) + th(tx)] , Bi(—y= (%J’)% [J—g(ﬂ) - J%(t]()cji,,i N

at i dition g, (z)=
where y=(3t,)%. We see from (G.6) that the consistency condi g, ‘)

g5{(z) can be fulfilled for z; €z <€z, if

jQ(é)df.:—m—anr(ZN +m, N»1 (G.12)

zt

i rovides a relation between 7y and 7. ) '
Wh\;\i: inow (Brussaard and Tothoek16)) that, for large £, di) (6) satisfies

4 sin” @ 4 L (f + 3P sin? 01— ) %

d (cos 8) d(cos 8)
x (1 — v*) —{cos B — Juv)z]} ip@=0, (G.13)
§; we shall consider only the domain |cos <1,

Y u=d,(f+Hv= i
where {(f+3) 1t (f+z ), then we obtain (G.1) with

If we put cos f=tgh z, dif (D) =g (z

0 (z)=(f + S (R v — (tghz — w) . (G.14)

and transition points -
e s
cosHlyzstghzl,2=/,tv$\/(1—;ﬁ)(l—v), (G.15)

when p=Y, 2, corresponds to cos &, =1; therefore we shall limit ourselves
— "

§#8. . -
* In;éorder to apply (G.2)+G.9), we must provide &, 2, My and #, explicitly.

From (G .4), (G.14) and (F.4) we have

.f(f + D[ — g — v+ 2uv igh z —(igh 2} dz =

=(f+% [F(z)— puA(z) — vB(2)], (G.16)
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where n— F, A, B are the internal dihedral angles between the planes belong-
ing respectively to f, a+6', b+ 8 (fig. 4 with p=cos «, v=cos ). We notice
from ((G.15) that z; corresponds to 8, =a+ ff, A=B=F=0. On the other
hand z, is associated to the case 8, =|0¢— f|; we have for a>fi: B=F=nm,
A=0and for a< §: A=F=xn, B=0. Therefore?%):

(@) =1={+4)(F— Ag— Bv),

y—cosf ¥ —qpcos P
F = arc cos (L)) A = arc COS( .......... I_J' ),

|sin & sin f3| |sin & sin 0
(G.17)
u—vcosf
B=arccos| ——— |,
(lsm f sin 9|)
and similarly for ¢,. Furthermore (G.12) yields now:
—m— s+ @MY= [0 d -
+ D (r—=nv), ax>f, (0>3),
U+ D) 6>
(f+DE-—m), a<fp, (3<¥).

From the asymptotic behaviour of Jacobi polynomials!®) and relation
(A.18) it is easy to obtain:

5 z
d 0y~ —————1 cos{{f +$) 0+ in(6 — 8") — §n}, (G.19
55 (0) 2(f + 1) sin 8 {f +4% b ( ) — dm} ( )
valid when £ is large and |d|, [§'| <f; performing this limit in (G.17), we
have: A~ Becdn, Feer—0 and consequently ¢, () = (+3) (x—H—Ix(d+ ).
Using this result and identifying the arguments of the cosines in (G.6) and
{G.19), we obtain

m=n(" —f). (G.20)
Therefore from (G.18)
_ n(d — &) 34, Go1

obviously 5, and #, are determined modulo 2N=. It must be stressed that
“only for “physical” values of 8, 5" the phases #,, #, (except when §<8') are
‘integer multiples of m; in this case the exponentially increasing term in
. (G.5) is ruled out.

The overall normalization in (G.2), (G.3) and (G.9) has been chosen in
agreement with (A.15),
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Appendix H. The 1+ 1+ 2 case

Tn this last appendix we want to show that (3.6) is iﬂ‘ agreeme.nt 'vrfith our
asymptotic formulae (1.4), (1.8). To this end we consider the limiting case
in which f, 8, &', though large, are still small with respect to a, b, ¢; therefore
i { appendix G.
we may use in (3.6) our results ©
In the oscillatory region we deduce from (3.6), (G.6), (G.17), (G.20)

nf—

LT PO i Sy
fb+dat+d “[2a+ Db+ DI Ln(f + 1) 1
-k ; 1
x [(1 = p2) (1 —v*) —(cos 0 — w1 *cos {t + = (8"~ f) ir}
and recalling (B.6):
b (ﬁ_ l)a+b+c+c‘5+6'
¢ ST cos(t— 4w (HL1)
fbtdat+?d [12zV]*
On the other hand we note that as a, b, ¢ increase in the tetrahedron of
fig. 4, the two faces belonging to ¢ become almost paralle%;. therefore:
¢ ;*11’ g=A~n—0,, 5 G=Bn—0; and from the definition (3.15b)
e Ty [ - a 3
we obtain
Q=(a+b+c+5+5'~%)1t+(f+%)F—5A—5B= (H2)
=t+(a+b+c+5+5'~fﬂn,
i i i 1)
which, when introduced into {(L.4a) leads to ‘(H . . '
Let us now consider the classically forbidden reglons. F'1rst we nc')tlce
that the transition points z, , telative 0 d$0(6) discussed in appendix G
correspond to configurations in which the tetrahedron of fig. 4 becomes

flat: this can be checked by means of (G.14) and (B.6). More precisely,
gince in z,: B=a+f, the tetrahedron enters the region B3 with

z4) d=(a+brc+d+d)m, (H.3)
while in z,, 0=1la—p| and it enters B, in either onc of the two ways
(a+b+e+f+d)nm &9,
2 :{(a+b+c‘+f+c5)7r 5<&.
On the other hand, from (G.5) and (3.6) we have for the forbidden region
relative to 24
{C a b } N (‘Df”ﬁ%ﬁf y
! 2{12x|V] )
e a:{i sin (&' {— f)l eill’“" +cos (8 — f) e~ (HL5)

(I1.4)
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Noticing that |Im ¢|=|Im €|, we see from (5.8), (I1.2), (I1.3) and (I1.5) that
for physical values of the angular momenta (H.5) and (5.8) become identical

even in sign. The same holds also for the forbidden region relative to z,;
in fact we have from (G.21):

(— l)u+b+c+_,r+a'

3 >4

- ] Hafrtatbtet+ f+8 —
(=1 { d<d

(# 1)n+b+c+f+6

in agreement with (H.4).
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1. Introduction and summary

One f’f the most imporiant contributions made by Giulio Racah to theoretical
physics was the systematic development of the theory of tensor o eratorsli? a'
an.guliar momentum ; the results of this development — called, in llzonor f f;l
principal creators, the Racah-Wigner calculus —, and its s,xp ﬁcationo 1'8
now part of the equipment of every working physicist1). ’ o
There alte two quite distinct reasons that underlie the success of this worl
. The ﬁrs‘t is the fundamental nature of angular momentum in qua tr \
-_rflecham?s, and this stems ultimately from symmetry (isotropy) (c)lf sn cor
ime (Poincaré group) which is the deepest presently known foundatio]:lai? y
quantum mechanics. This may be termed the ‘physical reason’ for the im .
'-tgnce of _the Racah—Wigner calculus. The second reason is mathcmat}')m;
__r;d provides the nltimate source for the very existence of the Racah-Wi et
.?tlculus: the angular momentum group (SU,) has the property of bi?er
:m_?ply reducible?). This is the property which guarantees that t]ie Rac Eg
W]_gr'ler.c,.alculus is uniquely defined by the group and contains no inh ent
m‘b1g.u1tles. ’?‘he really essential part of Wigner’s definition of simpie refi:fcgt
_}l%ty is ‘t'hat in reducing the Kronecker product of two irreduciblf rcpresen:
..ban(;ns (‘irreps’), a given irrep occurs either once or not at all. One is forced
mul_; sltr,uf:ture of qua'nt‘um mechanics (tensor operators acting on states) to
113 ply 1rlreps, if this ‘product’ upon being reduced into elements (irreps)
1 .a._:g,:lven irrep occurring more than once, an inherent ambiguity ma ocf
w h-_ls not decideable within the original symmetry group. Yo
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