Tentative Schedule

This calendar represents my best guess, in advance, of the order of topics and the length that we will spend on each topic in this course. Keep in mind that this is only a guess and that I will adjust timing to reflect what I see arising in the course as we proceed.

As we make our way through the material I will fill in the roman numeral subject headings with more specific headings so that you can look back on this calendar as a summary of the course.

Monday	WEDNESDAY	Friday
Aug 22nd 1	24th 2	26th 3 First Class: SHO, standard guess, complex exponentials
29th 4 Damped oscillations	31st5Three types of damping & damped driven oscillations	Sep 2nd6Damped driven oscillations and resonance
5th Labor Day Holiday	7th7Begin Calculus of Variations: Euler's method	9th 8 Calculus of Variations: Lagrange's method
12th9Lagrangianformulation ofmechanics	14th10Detailed exampleLagrangian mechanics	16th11Constraints in theLagranian formulation
19th12Guest lecture, Dr.Charman: Noether'stheorem I	21st 13 Guest lecture, Dr. Charman: Noether's theorem II	23rd 14 First Midterm
26th15Wrap up constraints, Central Forces: Reduction	28th 16 Radial E.O.M. for the Kepler problem, qualitative analysis of motion	30th17Solving the radialE.O.M., boundedKepler orbits

Calendar

Classical Mechanics

Monday	WEDNESDAY	Friday
Oct 3rd 18	5th 19	7th 20
Energy & eccentricity, unbound orbits, orbital transfer	Finish orbit transfer, Noninertial frames: acceleration without rotation, start example of tides	Tides in detail
10th 21	12th 22	14th 23
Rotational motion and rotating frames	Centrifugal and coriolis forces	Free fall with coriolis force and Foucault's pendulum
17th 24	19th 25	21st 26
Rigid Bodies: properties of collections of particles	Distinguishing angula velocity and angular momentum — the inertia tensor	Principle Axes
24th 27	26th 28	28th 29
Cube as an example, precession due to a weak torque	Euler's equations, intermediate axis theorem	Second Midterm
31st 30	Nov 2nd 31	4th 32
Intro to coupled oscillations, normal frequencies	Normal modes, normal coordinates and weak coupling example	Lagrangian approach to normal modes, double pendulum example
7th 33	9th 34	11th
Lagrangian approach to coupled oscillations: the general case	Chaos and Nonlinear Mechanics I	Veteran's Day Holiday
14th 35	16th 36	18th 37
Chaos and Nonlinear Mechanics II	Chaos and Nonlinear Mechanics III	Hamiltonian Theory I
21st 38	23rd 39	25th
Hamiltonian Theory II	Hamiltonian Theory III	Thanksgiving Break

Classical Mechanics

Monday		WEDNESDAY		Friday
28th	40	30th	41	Dec 2nd 42
Intro to Continuum		Intro to Continuum		Last Class: Intro to
Theory I		Theory II		Continuum Theory III,
				Classical Mechanics as
				a foundation for
				Quantum Mechanics,
				Quantum Field
				Theory, General
				Relativity and
				Quantum Gravity
				Last Class
5th	43	$7 \mathrm{th}$	44	9th 45
RRR Week		RRR Week		RRR Week
12th	46	14th	47	16th 48
Final Exam				