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Math Metods
Day 12

Today

I. Last Time
II. Transverse Coupled Oscillators
III. Continuum Limit
IV. Waves & The Wave Equation

I. Last Time

• N coupled longitudinal oscillators have normal mode solutions

xp(t) = A sin
(

pnπ

N + 1

)
cos(ωnt),

where p indexes the oscillators (p = 1, . . . , N) and n indexes which
normal mode is being considered and (n = 1, . . . , N). The normal
mode frequencies are

ωn = 2ω0 sin
(

nπ

2(N + 1)

)
; ω0 =

√
k
m

.

• We reviewed the direct calculation of a divergence ∇ · v.

II. Transverse Coupled Oscillators

Consider a massless string under tension T, with N masses at regular
intervals. Figure 1: A collection of N masses,

each of mass m, at equilibrium under a
tension T.

Let yp(t) be the (transverse) displacement of the pth mass. Once
again ` = L

N+1 and for small displacements (yp << `) we have:

Figure 2: We take the displacement of
the pth mass to be completely vertical
and described by yp(t).

The force on the pth mass, in the transverse direction, is

F = T sin θ+ − T sin θ−.

For small angles θ,
sin θ ≈ θ ≈ tan θ

and so,

m
d2yp

dt2 ≈ T(tan θ+ − tan θ−)

= T
[

yp+1 − yp

`
−

yp − yp−1

`

]
= −T

`
[2yp − yp+1 − yp−1].



2 hal haggard

This is the same as in the longitudinal case! We just need k→ T
` , so

ω0 =

√
T
`m

.

Hence,

yp(t) = A sin
(

pnπ

N + 1

)
cos(ωnt)

with

ωn = 2ω0 sin
(

nπ

2(N + 1)

)
and ω0 =

√
T
`m

.

III. Continuum Limit

Let’s examine the limit as N → ∞. We have

ωn = 2ω0 sin
(

nπ

2(N + 1)

)
N→∞≈ 2

√
T
`m

nπ

2(N + 1)
.

Recall ` = L
N+1 , so

ωn =

√
T
`m

nπ

N + 1
= nπ

√
T

mL
(N + 1)

1
N + 1

= nπ

√
T

mL(N + 1)
.

Let µ = Nm
L , the linear mass density. Then Nm = µL and

ωn =
nπ

L

√
T
µ

,

where we have neglected the 1 in (N + 1) since we have taken N large.
Now, let x = p` (the position of the pth mass), then

x = p
L

N + 1
=⇒ p

N + 1
=

x
L

.

So that for N → ∞ transverse oscillators

yx(t) = y(x, t) = A sin
(

nπ
x
L

)
cos(ωnt + φn),

where the first equality expresses our conceptual change from think-
ing of p as indexing which mass to thinking of x as labeling the
position along the continuous string and

ωn =
nπ

L

√
T
µ

.
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IV. Waves & The Wave Equation

Waves: Consider a string with mass per unit length µ, under tension
T, of length L, and fixed at both ends. Look at transverse oscillations.

Figure 3: A taut string pinned down at
both ends.

We would like to find
y(x, t).

The Wave Equation: Apply Newton’s 2nd law to the segment pictured
below:

The net force (in the transverse direction) is

F = T sin θ+ − T sin θ−.

So,

m
∂2y
∂t2 ≈ T(tan θ+ − tan θ−)

≈ T
(

∂y
∂x

∣∣∣
x+dx

− ∂y
∂x

∣∣∣
x

)
.

d Note: f (x + dx)− f (x) ≈ d f
dx dx. c So, the right hand side of our last

expression simplifies to

T
(

∂y
∂x

∣∣∣
x+dx

− ∂y
∂x

∣∣∣
x

)
≈ T

∂2y
∂x2 dx.

Our small segment of string has mass m = µdx, so that

µ��dx
∂2y
∂t2 = T

∂2y
∂x2 ��dx

=⇒ ∂2y
∂t2 =

T
µ

∂2y
∂x2 .

This is the classical wave equation:

∂2y
∂t2 = v2 ∂2y

∂x2 ,

where in our present case

v =

√
T
µ

.
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