Math Metods Day 12

I. Last Time

• *N* coupled longitudinal oscillators have normal mode solutions

$$
x_p(t) = A \sin\left(\frac{pn\pi}{N+1}\right) \cos(\omega_n t),
$$

where *p* indexes the oscillators ($p = 1, \ldots, N$) and *n* indexes which normal mode is being considered and $(n = 1, \ldots, N)$. The normal mode frequencies are

$$
\omega_n = 2\omega_0 \sin\left(\frac{n\pi}{2(N+1)}\right); \qquad \omega_0 = \sqrt{\frac{k}{m}}.
$$

• We reviewed the direct calculation of a divergence ∇ · **v**.

II. Transverse Coupled Oscillators

Consider a massless string under tension *T*, with *N* masses at regular intervals. Figure ¹: A collection of *^N* masses,

Let $y_p(t)$ be the (transverse) displacement of the p^{th} mass. Once again $\ell = \frac{L}{N+1}$ and for small displacements $(y_p << \ell)$ we have:

The force on the pth mass, in the transverse direction, is

$$
F = T\sin\theta_+ - T\sin\theta_-.
$$

For small angles *θ*,

$$
\sin \theta \approx \theta \approx \tan \theta
$$

and so,

$$
m\frac{d^2y_p}{dt^2} \approx T(\tan\theta_+ - \tan\theta_-)
$$

=
$$
T\left[\frac{y_{p+1} - y_p}{\ell} - \frac{y_p - y_{p-1}}{\ell}\right]
$$

=
$$
-\frac{T}{\ell}[2y_p - y_{p+1} - y_{p-1}].
$$

each of mass *m*, at equilibrium under a tension *T*.

Figure 2: We take the displacement of the pth mass to be completely vertical and described by $y_p(t)$.

This is the same as in the longitudinal case! We just need $k \to \frac{T}{\ell}$, so

$$
\omega_0 = \sqrt{\frac{T}{\ell m}}.
$$

Hence,

$$
y_p(t) = A \sin\left(\frac{pn\pi}{N+1}\right) \cos(\omega_n t)
$$

with

$$
\omega_n = 2\omega_0 \sin\left(\frac{n\pi}{2(N+1)}\right) \quad \text{and} \quad \omega_0 = \sqrt{\frac{T}{\ell m}}.
$$

III. Continuum Limit

Let's examine the limit as $N \rightarrow \infty$. We have

$$
\omega_n = 2\omega_0 \sin\left(\frac{n\pi}{2(N+1)}\right) \stackrel{N\to\infty}{\approx} 2\sqrt{\frac{T}{\ell m}} \frac{n\pi}{2(N+1)}.
$$

Recall $\ell = \frac{L}{N+1}$, so

$$
\omega_n = \sqrt{\frac{T}{\ell m}} \frac{n\pi}{N+1} = n\pi \sqrt{\frac{T}{mL}(N+1)} \frac{1}{N+1}
$$

$$
= n\pi \sqrt{\frac{T}{mL(N+1)}}.
$$

Let $\mu = \frac{Nm}{L}$, the linear mass density. Then $Nm = \mu L$ and

$$
\omega_n = \frac{n\pi}{L} \sqrt{\frac{T}{\mu}},
$$

where we have neglected the 1 in $(N + 1)$ since we have taken *N* large. Now, let $x = p\ell$ (the position of the p^{th} mass), then

$$
x = p \frac{L}{N+1} \implies \frac{p}{N+1} = \frac{x}{L}.
$$

So that for $N \to \infty$ transverse oscillators

$$
y_x(t) = y(x, t) = A \sin \left(n \pi \frac{x}{L}\right) \cos(\omega_n t + \phi_n),
$$

where the first equality expresses our conceptual change from thinking of *p* as indexing which mass to thinking of *x* as labeling the position along the continuous string and

$$
\omega_n = \frac{n\pi}{L} \sqrt{\frac{T}{\mu}}.
$$

IV. Waves & The Wave Equation

Waves: Consider a string with mass per unit length *µ*, under tension *T*, of length *L*, and fixed at both ends. Look at transverse oscillations. We would like to find

 $y(x, t)$.

The Wave Equation: Apply Newton's 2nd law to the segment pictured below:

The net force (in the transverse direction) is

$$
F=T\sin\theta_+-T\sin\theta_-\text{.}
$$

So,

$$
m\frac{\partial^2 y}{\partial t^2} \approx T(\tan \theta_+ - \tan \theta_-)
$$

$$
\approx T\left(\frac{\partial y}{\partial x}\Big|_{x+dx} - \frac{\partial y}{\partial x}\Big|_{x}\right)
$$

.

 \int Note: $f(x + dx) - f(x) \approx \frac{df}{dx} dx$. So, the right hand side of our last expression simplifies to

$$
T\left(\frac{\partial y}{\partial x}\Big|_{x+dx}-\frac{\partial y}{\partial x}\Big|_{x}\right)\approx T\frac{\partial^2 y}{\partial x^2}dx.
$$

Our small segment of string has mass $m = \mu dx$, so that

$$
\mu \cancel{d}x \frac{\partial^2 y}{\partial t^2} = T \frac{\partial^2 y}{\partial x^2} \cancel{d}x
$$
\n
$$
\implies \boxed{\frac{\partial^2 y}{\partial t^2} = \frac{T}{\mu} \frac{\partial^2 y}{\partial x^2}}.
$$

This is the classical wave equation:

$$
\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2},
$$

where in our present case

$$
v=\sqrt{\frac{T}{\mu}}.
$$

Figure 3: A taut string pinned down at both ends.