$$
\begin{pmatrix} 3 \\ \frac{1}{x} \end{pmatrix}
$$

 $\frac{1}{x} = m \begin{pmatrix} \hat{x} & \hat{y} & \hat{z} \\ x & y & z \\ v_x & v_y & v_z \end{pmatrix}$

Reviewed definitions of span, basis, dimension of a vector space, and orthonormal bases.

Math Methods II

\nDay 3

\n1. Using angular momentum as an example, we required

\n1.
$$
ax = a
$$
 example, we required

\n1. $ax = a$ example, we required

\n1. $ax = b$ and $ax = b$

\n2. $ax = b$ and $ax = b$

\n3. $ax = b$ and $ax = b$

\n4. $ax = b$ and $ax = b$

\n5. $ax = b$ and $ax = b$

\n6. $ax = b$ and $ax = b$

\n7. $ax = b$ and $ax = b$

\n8. $ax = b$ and $ax = b$

\n9. $ax = b$ and $ax = b$

\n1. $ax = b$

and such that the magnitudes
\nequad and the face areas:
\n
$$
\vec{A}_1 = \frac{1}{2} \vec{e}_3 \times \vec{e}_2
$$

\n $\vec{A}_2 = \frac{1}{2} \vec{e}_1 \times \vec{e}_3$
\n $\vec{A}_3 = \frac{1}{2} \vec{e}_2 \times \vec{e}_1$
\n $\vec{A}_4 = \frac{1}{2} (\vec{e}_2 - \vec{e}_1) \times (\vec{e}_3 - \vec{e}_1)$

$$
= \frac{1}{2} \vec{e}_{2} \times \vec{e}_{3} - \frac{1}{2} \vec{e}_{1} \times \vec{e}_{5} - \frac{1}{2} \vec{e}_{2} \times \vec{e}_{1}
$$

$$
= -\vec{A}_{1} - \vec{A}_{2} - \vec{A}_{3}
$$

$$
\sum_{i=1}^{N} \vec{F}_i = 0
$$

But α *pressure* $\int \text{over } C$ $\vec{F}_i = P \cdot \vec{A}_i$,

 50
 $\frac{4}{2}\vec{F}$ = $\sum_{i=1}^{15} \vec{F} \cdot \vec{A}_{i} = P \sum_{i=1}^{15} \vec{A}_{i} = 0$ $\Rightarrow \sum_{i=1}^{4} \hat{A}_{i} = 0$. Find the volume of a cube of with side length L using vertors =

or more symmetry,
$$
\vec{A} \cdot \vec{A} \cdot \vec{A} \cdot \vec{A} \cdot \vec{A} \cdot \vec{A} \cdot \vec{C}
$$
.

\nThus, is an example of Minkowski's theorem

\nHowever, $\vec{A} \cdot \vec{A} \cdot \vec{C} = 0$

\nHowever, $\vec{C} \cdot \vec{A} \cdot \vec{C} = 0$

\nHowever, $\vec{C} \cdot \vec{C} \cdot \vec{C} = 0$

\nThus, $\vec{C} \cdot \vec{C} \cdot \vec{C} \cdot \vec{C} = 0$

\nThus, $\vec{C} \cdot \vec{C} \cdot \vec{C} \cdot \vec{C} \cdot \vec{C} \cdot \vec{C} = 0$

\nThus, $\vec{C} \cdot \vec{C} \cdot \vec{C} \cdot \vec{C} \cdot \vec{C} = 0$

\nThus, $\vec{C} \cdot \vec{C} \$

In fact Snearing toung formations Preserve Volume, 50, $\vec{\alpha}\cdot(\vec{b}\times\vec{c})$ = Vol(parallelepiped) Where \hat{a} , \hat{b} , \hat{c} are the edge vectors
With tails that meet at the corner of any parallel epiped. There is an interesting relation to the volume of a tetrahedra here too. In highschool they may This suggests, and it is true, That any parallelepiped can be decomposed into 6 equal volume fetrahedra. III Analogies are often useful when you mect new quantities - bivectors
are like 2D generalizations of vectors

have trught you that for any P3/5
Pyramid $V = \frac{1}{3} Ah$
cerea of base theoght $\mathsf{S}^\mathfrak{v}$, $\frac{1}{2}$ $A = \frac{1}{2}$ $\left(\frac{2}{C} \times \frac{2}{C}\right)$ and $V = \frac{1}{b} h(\vec{c} \times \vec{a}) = \frac{1}{b} \vec{b} \cdot (\vec{c} \times \vec{a})$ Bivector
(directed plane)
(Rement) Vector
(directed line)
(Segnent) Paragoitude of P 1. length of PQ 1, area of OPAR Direction 2. Sense of rotation $2.From P to Q$ from 0-25-30 Just curling of fingers

The simplest way to build a binector is to take two vectors à, i E R³ and to form their wedge product (or exterior product) $\hat{a} \wedge \hat{b}$ $\frac{1}{2}\sqrt{5}$ = $\frac{1}{\sqrt{5}}$ The wedge product is defined

That's it. All the other properties Sollow from these. For example, 50itch en $\vec{\alpha} \wedge \vec{\alpha} = -\vec{\alpha} \wedge \vec{\alpha}$

lout the only object that equals itself is zero, so $\vec{a} \wedge \vec{a} = 0$ et director

On the homework you will prove that the space of all bivectors in R³, called N²R³, is itself

by two properties:
$$
PY_5
$$

\n $\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{a}$ (anti-sym.)
\n $(\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2) \wedge \vec{b}$
\n $= \lambda_1 \vec{a}_1 \wedge \vec{b} + \lambda_2 \vec{a}_2 \wedge \vec{b}$
\n $= \lambda_1 \vec{a}_1 \wedge \vec{b} + \lambda_2 \vec{a}_2 \wedge \vec{b}$
\n $= \lambda_1 \vec{a}_1 \wedge \vec{b} + \lambda_2 \vec{a}_2 \wedge \vec{b}$
\n $= \vec{a} \wedge \mu_1 \vec{b}_1 + \vec{a} \wedge \mu_2 \vec{b}_2$
\n $= \mu_1 \vec{a} \wedge \vec{b}_1 + \mu_2 \vec{a} \wedge \vec{b}_2$
\n $= \mu_1 \vec{a} \wedge \vec{b}_1 + \mu_2 \vec{a} \wedge \vec{b}_2$
\n $\vec{b} = \mu_1 \vec{a} \wedge \vec{b}_1 + \mu_2 \vec{a} \wedge \vec{b}_2$
\n $\vec{c} = \mu_1 \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c}_2$
\n $\vec{d} = \mu_1 \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c}$
\n $\vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{c} \wedge \vec{c} \wedge \vec{c}$
\n $\vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{e} \wedge \vec{c} \$

This nears that dion $\Lambda^{2} \mathbb{R}^{3} = 3.$ This is the key to the idea of the cross product; we map These three bivectors back onto the basis vectors of R3 $\{\hat{e}_1 \wedge \hat{e}_2, \hat{e}_1 \wedge \hat{e}_3, \hat{e}_2 \wedge \hat{e}_5\}$ $\begin{matrix} 1 & 1 & 1 \\ \frac{2}{5} & \frac{2}{5} & \frac{2}{5} & -\frac{2}{5} & -\frac{4}{5} \\ 1 & 1 & 1 & 1 \end{matrix}$, $\hat{e}_1 = \hat{x}$

The agreement of
dian
$$
\Lambda^2 \mathbb{R}^3
$$
 = dim \mathbb{R}^3
doesn't hold for other dimensions
dim $\Lambda^2 \mathbb{R}^n$ \neq dim \mathbb{R}^n .

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$. Then the contribution of $\mathcal{L}(\mathcal{L})$