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The Algebra of Complex Numbers 

Mathematically, complex numbers are introduced as solutions to algebraic equations.  For example, 

quadratic equations 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 have two solutions specified by the quadratic formula  

𝑥 =
−𝑏 ±√𝑏2−4𝑎𝑐

2𝑎
 , but in many cases these solutions will involve square roots of negative numbers.  In the 

simplest case, 𝑥2 + 1 = 0, the solutions are 𝑥 = ±√−1.  These square roots are not real numbers, and so 

are given a new designation, the imaginary unit 𝑖 ≡ √−1, and its negative −𝑖 ≡ −√−1.  With these 

definitions the following equations hold: 

𝑖𝑖 = 𝑖2 = −1,    (−𝑖)(−𝑖) = 𝑖2 = −1,  and  (−𝑖)𝑖 = 𝑖(−𝑖) = 1 

The imaginary unit can be multiplied by any real scalar, e.g. 3 ∗ 𝑖 = 3𝑖 or 
−5

2
∗ 𝑖 =

−5𝑖

2
.  Any number of 

the form 𝑏𝑖, with 𝑏 a real number, is known as an imaginary number.  Imaginary numbers combine 

under addition and subtraction similarly to their real counterparts: 

𝑖 + 𝑖 = 2𝑖,        𝑖 − 𝑖 = 0,     
−5𝑖

2
+

3𝑖

4
=

−7𝑖

4
. 

While sums and differences of imaginary numbers are equal to another imaginary number, this is not the 

case if one adds or subtracts a real number and an imaginary number.  So if 𝑎 is a real number and 𝑏𝑖 and 

imaginary number, their sum 𝑎 + 𝑏𝑖 cannot be simplified and (unless either 𝑎 or 𝑏 is 0) is not equal to a 

real number or an imaginary number.  Numbers of the form 𝑧 = 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers 
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are known as complex numbers.
1
  Real numbers and imaginary numbers are each subsets of complex 

numbers, the former being all complex numbers with 𝑏 = 0, and the latter being all complex numbers 

with 𝑎 = 0.  The real part of a complex number 𝑧 = 𝑎 + 𝑏𝑖  is 𝑎, a relation often written Re [𝑧] = 𝑎, and 

the imaginary part is 𝑏, Im [𝑧] = 𝑏.  Note that the imaginary part is, by convention, the real coefficient 

and not the imaginary piece of the sum. 

When adding two complex numbers 𝑧 = 𝑎 + 𝑏𝑖  and 𝑤 = 𝑐 + 𝑑𝑖, the real and imaginary pieces of each 

number combine, 

𝑧 + 𝑤 = 𝑎 + 𝑏𝑖 + 𝑐 + 𝑑𝑖 = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖, 

forming a new complex number. 

When multiplying two complex numbers, the multiplication rules of the imaginary unit are invoked:  

𝑧 ∗ 𝑤 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎𝑐 + 𝑏𝑐𝑖 + 𝑎𝑑𝑖 + 𝑏𝑑𝑖𝑖 = 𝑎𝑐 + 𝑏𝑐𝑖 + 𝑎𝑑𝑖 − 𝑏𝑑 = (𝑎𝑐 − 𝑏𝑑) + (𝑏𝑐 + 𝑎𝑑)𝑖. 

 So the product of two complex numbers also yields a complex number.  Similarly it is true that 

differences, quotients, roots, and other algebraic combinations of complex numbers yield complex 

numbers (except for division by 0).  In mathematical parlance, the set of complex is said to be 

“algebraically closed,” something which is not true of integers, rational numbers, or real numbers.  This 

fact underlies the fundamental theorem of algebra, which states that single-variable algebraic equations 

of order 𝑛, 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2+ .  .  . +𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0, where the 𝑎𝑛’s are complex 

numbers, has 𝑛 complex-number solutions.
2
 

 

Physical Problems and the Complex Plane 

Just because a number is a solution to an equation that models a physical question does not mean it 

possesses any physical meaning.  Consider the problem of the length of the side of a square plot of land 

with an area of 900 m
2
.  The equation 𝑥2 = 900 m

2
 has two solutions, 𝑥 = 30 m and 𝑥 = −30 m.  

However, there being no physical concept corresponding to negative length, one disregards the second 

solution.  A slightly more subtle problem is one where a ball, initially at height 𝑥𝑜 and traveling upwards 

at speed 𝑣𝑜, eventually falls back to Earth due to gravitational acceleration 𝑔.  In order to find the time 

when it hits the ground, one uses the constant acceleration equation 𝑥 = 𝑥𝑜 + 𝑣𝑜𝑡 −
1

2
𝑔𝑡2 and sets 𝑥 = 0.  

This yields the two solutions 𝑡 =
1

𝑔
(𝑣𝑜 ± √𝑣𝑜

2 + 2𝑔𝑥𝑜).  The positive sign solution gives the desired 

time to impact, but the negative sign solution is not without meaning.  If the ball was under constant 

gravitational acceleration before the moment in question, then it was also at ground level at 𝑡 =
1

𝑔
(𝑣𝑜 − √𝑣𝑜

2 + 2𝑔𝑥𝑜), a time before this initial moment.  Negative numbers can be used meaningfully 

                                                      
1
 The usual notation convention when discussing complex numbers is to use letters in the first part of the alphabet 

(𝑎, 𝑏, 𝑐, 𝑑, . . .) for real numbers and letters in the last part of the alphabet (𝑧, 𝑤, 𝑥, 𝑦, . . .) for complex numbers.  The 

latter usage can occasionally cause confusion with variables that range over the real numbers. 
2
 Technically there are 𝑛 solutions “with multiplicity.” For example the equation 𝑥2 − 2𝑥 + 1 = 0 has only 𝑥 = 1 

as a solution, but since 𝑥2 − 2𝑥 + 1 = (𝑥 − 1)(𝑥 − 1) this solution is counted twice. 
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and consistently to specify times relative to an arbitrary 

𝑡 = 0 moment.  Similarly, even though negative length 

is meaningless, displacements and positions can be 

negative relative to an arbitrary 0 position. 

Because there was no obvious geometrical 

interpretation for complex solutions to equations, for 

many centuries complex numbers were thought to have 

no utility in modeling physical problems.  Only at the 

beginning of the 19
th
 century was it widely realized 

that, just as real numbers have a one-to-one 

correspondence with points on a line, complex numbers 

have a one-to-one correspondence with points on a 

plane. As shown in fig. 1, the complex plane has the 

standard real number line as its horizontal axis, while 

its vertical axis consists of an imaginary number line.  

Using these axes as a coordinate system, one can plot 

any complex number as a point on the plane.  Real 

numbers lie along the horizontal axis, imaginary 

numbers along the vertical axis, and 0 is the origin. 

The mapping of complex numbers to points on a 

plane leads naturally to the identification of a two-

dimensional vector with each complex number, with 

the vector’s magnitude and direction found by 

starting at the origin on the plane and drawing an 

arrow ending at the point associated with the 

number.  As shown in Fig. 2, the vector, rather than 

the point, is now associated with the complex 

number, so that the complex number corresponds to 

a displacement on the complex plane rather than a 

specific location and need not be drawn starting at 

the origin.  Since the real and imaginary parts of two 

complex numbers add separately, just like the 

components of a two-dimensional vector, the sum of 

the vectors corresponding to two complex numbers 

𝑧 = (𝑎 + 𝑏𝑖) and 𝑤 = (𝑐 + 𝑑𝑖), added in 

conventional fashion, results in the vector corresponding to the sum of these complex numbers:  𝑧 + 𝑤 =

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖.  This visualization helps to show that complex numbers, 

rather than containing “unreal” pieces, can be treated as an ordered pair of real numbers 𝑎 + 𝑏𝑖 → (𝑎, 𝑏), 

which add and subtract like vector coordinates. 

 

Fig. 2  Points corresponding to complex numbers on 

the complex plane 

Fig. 1  Addition of complex numbers 
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Multiplying Complex-Plane Vectors 

While the realization that complex numbers can stand in for two-dimensional vectors helps to make their 

deployment in physics more palatable, it doesn’t immediately make them particularly useful; one might as 

well use other familiar two-dimensional vector notations for adding and subtracting them.  The great 

utility of complex numbers arises from how they combine under multiplication.  The rather messy rule for 

multiplying complex numbers algebraically, 𝑧𝑤 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑏𝑐 + 𝑎𝑑)𝑖, 

obscures an elegant geometrical fact that one can see only by considering the “length” of the associated 

vectors on the complex plane.  Following the definition of conventional vectors, the length of a complex 

number 𝑧 = 𝑎 + 𝑏𝑖, usually referred to as the norm or modulus of the number,  is defined as |𝑧| =

√𝑎2 + 𝑏2.  The absolute value symbol is used in part as a reminder that the norm is always a positive real 

number and only 0 when 𝑧 = 0.  With this definition one sees that the norm of the product of complex 

numbers is the product of the norms: 

  |𝑧𝑤| = √(𝑎𝑐 − 𝑏𝑑)2 + (𝑏𝑐 + 𝑎𝑑)2 = √𝑎2𝑐2 − 2𝑎𝑐𝑏𝑑 + 𝑏2𝑑2 + 𝑏2𝑐2 + 2𝑏𝑐𝑎𝑑 + 𝑎2𝑑2 

= √𝑎2𝑐2 + 𝑏2𝑑2 + 𝑏2𝑐2 + 𝑎2𝑑2 = √(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = √(𝑎2 + 𝑏2)√(𝑐2 + 𝑑2) = |𝑧||𝑤| 

Beginning physics students typically encounter two methods of multiplying vectors, dot products and 

cross products.  The former can be used to combine two vectors of any matching dimension, but always 

produces a scalar, while the latter combines two vectors to make a vector, but can only be used on vectors 

that are three-dimensional or, somewhat surprisingly, seven-dimensional.  The rule for complex number 

multiplication is a new way of combining two-dimensional vectors to get another two-dimensional vector. 

In calculating the norm of a vector it is important to keep in mind that the square of the norm is not the 

square of the complex number: (𝑎 + 𝑏𝑖)2 ≠ 𝑎2 + 𝑏2.  But it is true that (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏2.  

The complex number (𝑎 − 𝑏𝑖) is known as the complex conjugate of (𝑎 + 𝑏𝑖), and, conversely, 

(𝑎 + 𝑏𝑖) is the complex conjugate of (𝑎 − 𝑏𝑖).  Symbolically, the complex conjugate of a number 𝑧 is 

designated 𝑧∗, so that 𝑧𝑧∗ = |𝑧|2 and (𝑧∗)∗ = 𝑧.  When 

looking at any expression for a complex number, one can 

always find its complex conjugate by changing all the 𝑖’s to 

– 𝑖’s and – 𝑖’s to 𝑖’s.  Graphically, the complex conjugate of a 

vector on the complex plane is the mirror image of the vector 

reflected about the real axis. 

While the magnitudes of two complex numbers have a simple 

relation to the magnitude of their product, it is less clear how 

the directions of the three corresponding vectors are related.  

Again there is a simple geometrical interpretation, but it is 

most apparent if the vectors are reexpressed in polar 

coordinates on the complex plane.  As shown in fig. 3,  

𝑧 = 𝑎 + 𝑏𝑖 = (|𝑧| cos 𝜙) + (|𝑧| sin 𝜙)𝑖, 
Fig. 3 Complex number in polar coordinates 
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where 𝜙 is the angle the vector associated with  𝑧 makes 

with the positive real axis, often called the argument of 𝑧.  

This polar-coordinate expression is rather messy, but can be 

written in a much more elegant form using the Euler 

relation 

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 , 

one of the most important formulas to keep in mind when 

dealing with complex numbers and provable by writing the 

Taylor expansions of each term.
3
  Implementing this 

relation, 

𝑧 = |𝑧|(cos 𝜙 + 𝑖 sin 𝜙) = |𝑧|𝑒𝑖𝜙 

In this form the visualization of complex-number multiplication on the complex plane is clearer, as shown 

in Fig. 4.  The vector corresponding to the product 𝑧𝑤 = |𝑧|𝑒𝑖𝜙|𝑤|𝑒𝑖𝜃 = |𝑧||𝑤|𝑒𝑖(𝜙+𝜃) is one with a 

norm equal to the product of 𝑧 and 𝑤’s norms and an argument that is the sum of 𝑧 and 𝑤’s arguments.  

In general, if one is adding complex numbers it is easier to do so if they are written in rectilinear 𝑧 = 𝑎 +

𝑏𝑖 form, and if one is multiplying complex numbers it is easier to do so if they are written in polar 

𝑧 = |𝑧|𝑒𝑖𝜙 form. 

 

Application:  AC Circuit Analysis Using Complex Phasors 

We next examine a case where complex numbers – typically 

in their polar form – are frequently deployed in physics:  AC 

circuits. Recall that an AC circuit is one where the applied 

voltage varies sinusoidally in time at some angular 

frequency 𝜔:  𝑉(𝑡) = 𝑉𝑜 cos(𝜔𝑡).  While one could equally 

well have used a sine function or other sinusoid, it is 

conventional to use a cosine function so that the applied 

voltage is at its maximum amplitude 𝑉𝑜 at time 𝑡 = 0.  

Consider this voltage applied to a resistor R and capacitor C wired in series.  From Kirchoff’s laws we 

know that at any moment in time the voltage drop across the resistor 𝑉𝑅(𝑡) and the voltage drop across 

the capacitor 𝑉𝐶(𝑡) must sum to equal the applied voltage: 

𝑉(𝑡) = 𝑉𝑅(𝑡) + 𝑉𝐶(𝑡) 

                                                      
3
 Taking the complex conjugate of both sides of the Euler relation yields 𝑒−𝑖𝑥 = cos 𝑥 − 𝑖 sin 𝑥 , which 

can be added or subtracted from the original relation to yield widely used complex expressions for sine 

and cosine:  cos 𝑥 =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
 and sin 𝑥 =

𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
. 

 

      Fig. 4 Multiplication of complex numbers 

Figure 5  RC circuit with applied AC voltage 
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From physical considerations, we know that if the applied voltage is periodic with angular frequency 𝜔 

then these voltage drops must also be periodic with the same angular frequency; a general expression for 

each of these drops is then one that includes an unknown amplitude and phase: 

𝑉𝑅(𝑡) = 𝑉𝑅𝑜
cos(𝜔𝑡 + 𝜑𝑅)    and      𝑉𝐶(𝑡) = 𝑉𝐶𝑜

cos(𝜔𝑡 + 𝜑𝐶). 

Similarly the current through the circuit will also be periodic with the same frequency and can be written 

𝐼(𝑡) = 𝐼𝑜 cos(𝜔𝑡 + 𝜑𝐼).  From further physical considerations, it can be shown that the amplitudes and 

phases are interrelated in the following way: 

𝑉𝑅𝑜
= R𝐼𝑜                  𝑉𝐶𝑜

=  
𝐼𝑜

𝜔C
                𝜑𝑅 = 𝜑𝐼                  𝜑𝐶 = 𝜑𝐼 −

𝜋

2
 . 

The Kirchoff voltage-drop equation therefore may be rewritten as 

𝑉𝑜 cos(𝜔𝑡) =  R𝐼𝑜 cos(𝜔𝑡 + 𝜑𝐼) +
𝐼𝑜

𝜔C
cos(𝜔𝑡 + 𝜑𝐼 − 𝜋

2
) 

The mathematical task is to solve this equation for 𝐼𝑜 and 𝜑𝐼 in 

terms of 𝑉𝑜, R, C, and 𝜔.  This solution can then be used to find 

the amplitudes and phases for the voltages across the resistor and 

capacitor.  While the solution to this equation can be found using 

trigonometric identities, a faster and more intuitive path is to map 

this problem onto the complex plane.  We begin by noting that, 

from Euler’s relation, each cosine function constitutes the real part 

of a complex exponential function, e.g.,  

𝐼𝑜 cos(𝜔𝑡 + 𝜑𝐼) = Re [𝐼𝑜𝑒𝑖(𝜔𝑡+𝜑𝐼)] . 

Graphically, the complex exponential is represented by a vector in the complex plane, known in this 

context as a phasor, which has a constant magnitude equal to the amplitude of the cosine and rotates 

counterclockwise in time at angular frequency 𝜔, thus making one full revolution every 2𝜋/𝜔 seconds.  

The real part of this vector at any moment in time is its component along the real axis, which oscillates 

from a maximum of 𝐼𝑜 to a minimum of −𝐼𝑜 and is zero at moments when the vector points along the 

imaginary axis.  The continually changing angle this vector makes with the positive real axis is equal to 

the continually changing argument of the cosine function. 

While this rotating phasor alone can provide a useful visualization of the cosine function, its real utility is 

in analyzing relationships between cosine functions.  Returning to the voltage-drop equation, consider the 

corresponding equation between complex exponentials: 

𝑉𝑜𝑒𝑖𝜔𝑡 =  R𝐼𝑜𝑒𝑖(𝜔𝑡+𝜑𝐼) +
𝐼𝑜

𝜔C
𝑒𝑖(𝜔𝑡+𝜑𝐼−𝜋

2) . 

In order for this equality to hold, both the real parts of each side and the imaginary parts of each side must 

be equal.  The real-part equality is equivalent to the voltage-drop equation, so solutions of this complex 

equation for 𝐼𝑜 and 𝜑𝐼 will also be solutions for the voltage-drop equation. 

Figure 6  Phasor rotating on the complex plane 
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On first glance adding in an extra imaginary part to the equality would seem to complicate matters even 

further; however, this approach has several advantages. First, the arguments of the exponentials are much 

easier to algebraically manipulate than the arguments of cosine functions.  Here one can eliminate the 

time-dependent part of the equation by dividing by 𝑒𝑖𝜔𝑡, whereas a similar elimination in the cosine 

equation requires cumbersome trig-identity expansions. Second, the graphical representations of the 

complex phasors often lend themselves to simple geometric solutions to algebraic problems.  In this case 

we first draw the three phasors representing each term:  

the applied voltage, the voltage across the resistor, and the 

voltage across the capacitor.  As before, each phasor 

rotates counterclockwise with the same angular speed 𝜔, 

so the relative angles between them remain the same, with 

the angle between the two phasors corresponding to 

voltage drops across the resistor and capacitor always 

being 90°.  From this picture, one can see that the 

complex exponential equation corresponds to a vectorial 

sum of two legs of a right triangle equaling its 

hypotenuse.  One can then use familiar geometric 

relations to extract the quantities in question from the 

magnitudes of each vector: 

(𝑉𝑜)2 = (R𝐼𝑜)2 + (
𝐼𝑜

𝜔C
)

2

 

⇒ 𝐼𝑜 =
𝑉𝑜

√R2 + (
1

𝜔C)
2

                     𝜑𝐼 = tan−1 (
𝐼𝑜 𝜔C⁄

R𝐼𝑜
) = tan−1 (

1

𝜔RC
) 

Any equation involving sums and differences of sinusoids can be tackled in a similar fashion.  First, write 

all sinusoids as cosines (i.e. using cos(𝑥 − 𝜋/2) = sin 𝑥), then invoke the complex mapping       

𝐴 cos(𝑥 + 𝜑) → 𝐴𝑒𝑖(𝑥+𝜑), and finally solve the complex equation algebraically or geometrically keeping 

in mind that the real parts and imaginary parts equate. 

 

Application:  AC Circuit Power & Multiplying Complex Phasors 

In some texts, the distinction between the real voltage function and its complex mapping is notationally 

distinguished.  For example, the actual applied voltage is specified by 𝑉 = 𝑉𝑜 cos(𝜔𝑡) and the complex-

mapping counterpart by 𝑉̃ = 𝑉𝑜𝑒𝑖𝜔𝑡, a notational distinction we follow here.  However, the mapping of 

cosines to complex exponentials is so ubiquitous that authors may lapse into statements such as, “the 

applied voltage is given by 𝑉𝑜𝑒𝑖𝜔𝑡,” although properly speaking the voltage is given by the real part of 

this expression.  Nevertheless, the reader should keep in mind at all times that this ubiquity is not a 

mathematical blank check to replace cosines by complex exponentials in all situations.  While the 

complex mapping works in a straightforward manner when solving sums and differences of cosines, the 

additional imaginary part must be handled carefully when dealing with products and quotients of cosines. 

Figure 7  Addition of phasors for the RC circuit. 
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For example, consider the power dissipated by the circuit in question, given by the product of the applied 

voltage and current:  𝑃(𝑡) = 𝐼(𝑡)𝑉(𝑡) = 𝐼𝑜 cos(𝜔𝑡 + 𝜑𝐼) 𝑉𝑜 cos(𝜔𝑡).  This expression can again be 

simplified using trig identities, but we can also approach it with the complex mapping using the fact that, 

for any complex number 𝑧, Re [𝑧] =
1

2
(𝑧 + 𝑧∗).  With 𝑉̃ = 𝑉𝑜𝑒𝑖𝜔𝑡 and 𝐼 = 𝐼𝑜𝑒𝑖(𝜔𝑡+𝜑𝐼), we thus have 

 𝑃(𝑡) = 𝐼(𝑡)𝑉(𝑡) =
1

2
(𝐼 + 𝐼∗)

1

2
(𝑉̃ + 𝑉̃∗) =

1

2
(𝐼𝑜𝑒𝑖(𝜔𝑡+𝜑𝐼) + 𝐼𝑜𝑒−𝑖(𝜔𝑡+𝜑𝐼))

1

2
(𝑉𝑜𝑒𝑖𝜔𝑡 + 𝑉𝑜𝑒−𝑖𝜔𝑡) 

=
1

4
𝐼𝑜𝑉𝑜(𝑒𝑖(2𝜔𝑡+𝜑𝐼) + 𝑒−𝑖(2𝜔𝑡+𝜑𝐼) + 𝑒𝑖𝜑𝐼 + 𝑒−𝑖𝜑𝐼) =

1

2
𝐼𝑜𝑉𝑜(cos(2𝜔𝑡 + 𝜑𝐼) + cos 𝜑𝐼) 

For this problem, the transition to complex numbers offers little computational efficiency over using trig 

identities on the original product of cosine functions.  However, there are many problems where the 

efficiency gains of making this transition are considerable.  The advantage of the complex formulation 

when dealing with products is principally that it decomposes expressions into sums of complex 

exponentials with well-defined frequencies, which not only can simplify further calculations but can give 

one an intuitive sense of the oscillation rates of different parts of a result. 

As a simple example, we note that one is rarely interested in the instantaneous power 𝑃(𝑡) dissipated by a 

circuit.  Rather one is concerned with the average power dissipated over time.  Formally, the average 

power is defined as 𝑃̅ ≡
1

𝑇
∫ 𝑃(𝑡)

𝑇

0
𝑑𝑡, where 𝑇 is the time scale one wishes to averages over.  For AC 

electrical circuits driven by a single source it is sufficient to average over a single period of oscillation 

𝑇 =
2𝜋

𝜔
 since all dynamic properties repeat on this time scale, but in other situations one may wish to 

average over multiple periods, over time-scales set by a measurement apparatus, or in the limit 𝑇 → ∞.  

From the expression above, 𝑃(𝑡) =
1

4
𝐼𝑜𝑉𝑜(𝑒𝑖(2𝜔𝑡+𝜑𝐼) + 𝑒−𝑖(2𝜔𝑡+𝜑𝐼) + 𝑒𝑖𝜑𝐼 + 𝑒−𝑖𝜑𝐼), one can 

immediately identify the first two terms as oscillations with periods 
2𝜋

2𝜔
 which will average to zero over 

the period of the applied voltage, leading to an average power of 𝑃̅ =
1

4
𝐼𝑜𝑉𝑜(𝑒𝑖𝜑𝐼 + 𝑒−𝑖𝜑𝐼) =

1

2
𝐼𝑜𝑉𝑜 cos 𝜑𝐼. 

 

Application:  Harmonic Wave Superpositions 

Along with AC circuits, another common implementation of the mapping of cosines to complex 

exponentials in physical problems is found in the analysis of waves.  As discussed further in a later 

section, functions describing waves can often be decomposed into sums or integrals of harmonic (i.e. 

sinusoidal) components.  In the case of a one-dimensional wave, each harmonic wave has the form 

𝐴 cos(𝑘𝑥 − 𝜔𝑡 + 𝜑), where 𝐴 is the amplitude of the harmonic wave, 𝑘 the wavenumber (𝑘 ≡
2𝜋

𝜆
, with 

𝜆 the wavelength), 𝜔 the angular frequency, and 𝜑 a constant phase necessary to account for the choice of 

origins of position and time. 

As a simple example, consider a wave made up of two harmonic waves (often described as the 

superposition of two harmonic waves): 
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𝑔(𝑥, 𝑡) = 𝐴1 cos(𝑘1𝑥 − 𝜔1𝑡 + 𝜑1) + 𝐴2 cos(𝑘2𝑥 − 𝜔2𝑡 + 𝜑2) 

In the laboratory such a wave might be produced by starting with two harmonic waves that are directed to 

physically overlap, resulting in this interference of the harmonic waves.  In this case our mapping of 

cosines to complex exponentials results in the function 

𝑔̃(𝑥, 𝑡) = 𝐴1𝑒𝑖(𝑘1𝑥−𝜔1𝑡+𝜑1) + 𝐴2𝑒𝑖(𝑘2𝑥−𝜔2𝑡+𝜑2) 

whose real part corresponds to the real wave. 

Why would one go to the trouble of using the complex mapping?  A significant advantage in the case of 

waves stems from the fact that particular harmonic components of a wave may be subjected to physical 

perturbations which alter their phase.  For example, suppose the first harmonic wave is re-directed to 

reflect off a barrier before superposing with the second one.  The additional distance 𝐿 it travels will add a 

phase shift of 𝑘1𝐿, while the reflection will typically flip the sign of the amplitude, or, equivalently, add a 

phase of 𝜋:  𝐴1 cos(𝑘1𝑥 − 𝜔1𝑡 + 𝜑1) is thus altered to 𝐴1 cos(𝑘1(𝑥 + 𝐿) − 𝜔1𝑡 + 𝜑1 + 𝜋) =

𝐴1 cos(𝑘1𝑥 − 𝜔1𝑡 + 𝜑1 + 𝜋 + 𝑘1𝐿).  While this alteration is straightforward to write down by 

inspection, it is an algebraically complicated operation to change the argument of the cosine.  In the 

complex mapping, however, this alteration is accomplished through simple multiplication: 

𝐴1𝑒𝑖(𝑘1𝑥−𝜔1𝑡+𝜑1) ∗ 𝑒𝑖(𝑘1𝐿+𝜋) =  𝐴1𝑒𝑖(𝑘1𝑥−𝜔1𝑡+𝜑1+𝜋+𝑘1𝐿).  For many analyses of wave phenomena the 

short term cost of going to the trouble of mapping cosines to complex exponentials is a worthwhile 

investment in the long run due to the algorithmic ease with which one can account for various phase 

shifts. 

We reiterate the warning, a version of which was first mentioned in connection with the complex 

exponential mapping of AC circuits, that many authors will make no notational distinction between the 

purely real function describing a harmonic wave 𝑔(𝑥, 𝑡) and its complex counterpart 𝑔̃(𝑥, 𝑡).  In these 

texts the complex functions are the only ones discussed and it is assumed the reader can translate these 

functions back to their real counterparts as needed.  Another notational technique (occasionally employed 

for AC circuits, but more widely used in wave analysis) is to include any constant complex phase shifts in 

the formerly real amplitude of the wave.  In this case, 𝐴1𝑒𝑖(𝑘1𝑥−𝜔1𝑡+𝜑1+𝜋+𝑘1𝐿) = 𝐴̃1𝑒𝑖(𝑘1𝑥−𝜔1𝑡), where 

𝐴̃1 = 𝐴1𝑒𝑖(𝜑1+𝜋+𝑘1𝐿) is the complex amplitude of the harmonic wave.  In addition to making the 

expression for the wave more compact, this choice allows one to dedicate the explicit space and time 

dependence of the wave to the complex exponential while encoding all information about both the wave’s 

amplitude and relative phase in the norm and argument of the single complex constant 𝐴̃1. 

 

Application:  Intensity of Harmonic Wave Superpositions 

Just as with AC circuits, one must use a bit of extra caution when using complex expressions for waves in 

calculations requiring products.  For example, the time-dependent intensity of a wave is proportional to 

the square of its magnitude: 𝐼(𝑡) = 𝑐[𝑔(𝑥, 𝑡)]2, where 𝑐 is a constant that depends on the types of waves 

being analyzed.  To calculate the intensity using the complex function 𝑔̃(𝑥, 𝑡) and its complex conjugate 

𝑔̃∗(𝑥, 𝑡) we can use the same relation employed in the calculation of power for AC circuits, namely 

𝑔(𝑥, 𝑡) =
1

2
(𝑔̃(𝑥, 𝑡) + 𝑔̃∗(𝑥, 𝑡)), so that 𝐼(𝑡) =

𝑐

4
(2|𝑔̃(𝑥, 𝑡)|2 + [𝑔̃(𝑥, 𝑡)]2 + [𝑔̃∗(𝑥, 𝑡)]2).  For the 
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complex version of the superposition of two harmonic waves:  𝑔̃(𝑥, 𝑡) = 𝐴̃1𝑒𝑖(𝑘1𝑥−𝜔1𝑡) + 𝐴̃2𝑒𝑖(𝑘2𝑥−𝜔2𝑡) 

with complex amplitudes 𝐴̃1 = 𝐴1𝑒𝑖𝜑1 and 𝐴̃2 = 𝐴2𝑒𝑖𝜑2 the time-dependent intensity is then 

𝐼(𝑡) =
𝑐

4
(2 [|𝐴̃1|

2
+ |𝐴̃2|

2
+ 𝐴̃1𝐴̃2

∗
𝑒𝑖((𝑘1−𝑘2)𝑥−(𝜔1−𝜔2)𝑡) + 𝐴̃1

∗
𝐴̃2𝑒−𝑖((𝑘1−𝑘2)𝑥−(𝜔1−𝜔2)𝑡)]

+ [𝐴̃1
2

𝑒𝑖(2𝑘1𝑥−2𝜔1𝑡) + 𝐴̃2
2

𝑒𝑖(2𝑘2𝑥−2𝜔2𝑡) + 2𝐴̃1𝐴̃2𝑒𝑖((𝑘1+𝑘2)𝑥−(𝜔1+𝜔2)𝑡)]

+ [𝐴̃1
∗2

𝑒−𝑖(2𝑘1𝑥−2𝜔1𝑡) + 𝐴̃2
∗2

𝑒−𝑖(2𝑘2𝑥−2𝜔2𝑡) + 2𝐴̃1
∗
𝐴̃2

∗
𝑒−𝑖((𝑘1+𝑘2)𝑥−(𝜔1+𝜔2)𝑡)]) . 

While this expression looks extremely cumbersome, it can be simplified somewhat by rewriting sums of 

complex exponentials into cosines.  More importantly, as with the time-dependent power of AC circuits, 

this instantaneous intensity is rarely a relevant quantity since any instrument records an average intensity
4
 

over a finite time scale 𝐼 ̅ ≡
1

𝑇
∫ 𝐼(𝑡)

𝑇

0
𝑑𝑡, and this averaging will lead to the elimination of many terms. 

As a familiar example, one’s eyes and ears can sense intensity changes in light and sound on the order of 

a tenth of a second.  Most audible harmonic sound waves (“pure tones”) oscillate hundreds or thousands 

of times per second, while visible harmonic light waves (“monochromatic light”) oscillate on the order of 

1014 times per second.  Any sinusoid or complex exponential oscillating in 𝐼(𝑡) at these frequencies will 

thus average to zero on our perceptive time scales.  In the above expression, any term oscillating at 

multiples or sums of 𝜔1 and 𝜔2 vanishes on time averaging, meaning the 2
nd

 and 3
rd

 bracketed terms 

disappear.  Similarly, under conditions where any individual harmonic frequency in a superposed wave 

oscillates faster than the time interval over which the intensity is averaged, all terms in [𝑔̃(𝑥, 𝑡)]2 and 

[𝑔̃∗(𝑥, 𝑡)]2 average to zero, leaving  𝐼 ̅ =
𝑐

2
|𝑔̃(𝑥, 𝑡)|2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Examining this remaining term to be time averaged for the problem at hand, we have  

𝐼 ̅ =
𝑐

2
[|𝐴̃1|

2
+ |𝐴̃2|

2
+ 𝐴̃1𝐴̃2

∗
𝑒𝑖((𝑘1−𝑘2)𝑥−(𝜔1−𝜔2)𝑡) + 𝐴̃1

∗
𝐴̃2𝑒−𝑖((𝑘1−𝑘2)𝑥−(𝜔1−𝜔2)𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

]

=
𝑐

2
[𝐴1

2 + 𝐴2
2 + 𝐴1𝑒𝑖𝜑1𝐴2𝑒−𝑖𝜑2𝑒𝑖((𝑘1−𝑘2)𝑥−(𝜔1−𝜔2)𝑡) + 𝐴1𝑒−𝑖𝜑1𝐴2𝑒𝑖𝜑2𝑒−𝑖((𝑘1−𝑘2)𝑥−(𝜔1−𝜔2)𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

]

=
𝑐

2
[𝐴1

2 + 𝐴2
2 + 2𝐴1𝐴2 cos((𝑘1 − 𝑘2)𝑥 − (𝜔1 − 𝜔2)𝑡 + 𝜑1 − 𝜑2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

There are three possibilities for the time-averaging of these remaining terms.  In the first case not only are 

the frequencies 𝜔1 and 𝜔2 fast compared with the time averaging, but the frequencies are far enough 

apart that their difference is as well.  In this case the oscillating terms vanish and the time-averaged 

intensity is 
𝑐

2
(𝐴1

2 + 𝐴2
2), meaning the intensity of the combined waves is equal to the sum of the 

intensities of each individual harmonic wave.  In the second case, the difference in frequencies is small 

enough that the oscillating intensity can be detected.  The intensity will wax and wane at a frequency 

(𝜔1 − 𝜔2), known as the beating frequency.  Such an oscillation in intensity can be observed directly 

with the ear when two pure tones only a few Hz apart are played simultaneously.  In the third case, the 

frequencies are identical, in which case the wavenumbers are also almost invariably identical.  The time-

averaged intensity in this case is 𝐼 ̅ =
𝑐

2
[𝐴1

2 + 𝐴2
2 + 2𝐴1𝐴2 cos(𝜑1 − 𝜑2)], so that the difference in 

                                                      
4
 Unfortunately the word “intensity” and the symbol 𝐼 are used both in reference to the instantaneous 𝐼(𝑡) and the 

time-averaged intensity, with the latter quantity more often the one that is meant. 
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phases determines whether the interference of two harmonic waves result in an intensity that is larger or 

smaller than the sum of the intensities of the individual waves. 

Using trigonometric identities, these and similar results can all be arrived at using only the real functions 

describing the harmonic waves.  However, the relatively compact 𝐼 ̅ =
𝑐

2
|𝑔̃(𝑥, 𝑡)|2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  formula that applies 

under the specified conditions typically makes the translation to the complex formalism worthwhile. 

 

Application:  Fourier Series and Transforms 

Harmonic waves and their superpositions are especially useful topics of study since one can show that any 

periodic wave can be written as a – perhaps infinite – superposition of harmonic waves.  More generally, 

any real analytic function 𝑓(𝑥) that is periodic, i.e. 𝑓(𝑥) = 𝑓(𝑥 + 𝜆) for some constant 𝜆, can be written 

as a sum of signs and cosines:  

𝑓(𝑥) =  ∑ 𝑎𝑛

∞

𝑛=0

cos (2𝜋𝑛
𝑥

𝜆
) + 𝑏𝑛 sin (2𝜋𝑛

𝑥

𝜆
) = ∑ 𝑎𝑛

∞

𝑛=0

cos(𝑘𝑛𝑥) + 𝑏𝑛 sin(𝑘𝑛𝑥) 

where 𝑘𝑛 ≡
2𝜋𝑛

𝜆
 and the real 𝑎𝑛 and 𝑏𝑛 coefficients depend on the particular periodic wave in question.  

This Fourier series decomposition of a periodic wave can alternately be written in a more compact form, 

using complex exponentials and Euler’s relation, as 

𝑓(𝑥) = ∑ 𝑐𝑛

∞

𝑛=−∞

𝑒𝑖𝑘𝑛𝑥  , 

where the (possibly complex) 𝑐𝑛 coefficients again depend on the particular periodic wave in question.
5
  

We emphasize that in this equation the complex exponential sum is an exact equality of the sum of 

sinusoids and not a mapping from cosines to complex exponentials as it was in the previous cases.  The 

use of complex exponentials in this case has some advantages in compactness and calculation and so is a 

widely used “decomposition” of periodic functions describing physical phenomena. 

As the interval 𝜆 is increased, the spacing between successive 𝑘𝑛’s gets smaller and smaller, and in the 

limit 𝜆 → ∞ the discrete 𝑘𝑛’s become a continuous variable 𝑘.  Similarly, the discrete coefficients 𝑐𝑛 in 

one-to-one correspondence with each 𝑘𝑛 also become continuous and are now written as a function of 𝑘, 

𝑐(𝑘).  Finally, with both 𝑘 and 𝑐(𝑘) now continuous, the formerly discrete sum decomposition is now an 

integral: 

𝑓(𝑥) =  ∫ 𝑐(𝑘)
∞

−∞

𝑒𝑖𝑘𝑥𝑑𝑘 

In this limit, the function 𝑐(𝑘), which specifies the amplitude of each sinusoidal component that 𝑓(𝑥) is 

decomposed into, is known as the Fourier transform of 𝑓(𝑥).  The advantage of taking this limit is that 

                                                      
5
 The relations between the 𝑎𝑛’s, 𝑏𝑛’s, and 𝑐𝑛’s that must hold for this equality, as well as the relations between 𝑐𝑛’s 

that ensure the sum is purely real are left as exercises for the reader. 
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now one is not limited to decomposing periodic functions into sinusoidal components, but can describe a 

large class of  non-periodic functions just in terms of continuous sums of complex exponentials. The 

Fourier transform, like the Fourier series, can be recast entirely in terms of real sines and cosines, but in 

practice this is rarely done, in part because, even in the case of using real functions and coefficients, the 

process of determining these coefficients often requires the mathematical machinery of doing integrals on 

the complex plane, a process that is a central concern of the field of complex analysis.  The complex 

coefficients 𝑐(𝑘) also typically require such integrals; in fact it can be shown that if the function 𝑓(𝑥) is 

known, the coefficients are given by the compact but often tricky-to-evaluate equation 

𝑐(𝑘) =  
1

2𝜋
∫ 𝑓(𝑥)

∞

−∞

𝑒−𝑖𝑘𝑥𝑑𝑥 

 

Application:  Quantum Mechanical Waves 

The use of complex numbers is at its most ubiquitous in physics in the field of quantum mechanics.  

Indeed, even the most basic quantum equations, such as the Schrödinger equation, are written in terms of 

complex numbers.  As with the applications discussed above, the use of complex numbers is not a 

necessity for doing quantum calculations, but reformulating quantum algorithms in terms of only real 

numbers and functions would be so mathematically cumbersome that in practice a complex formalism is 

always used.  An accounting of basic methods of how complex numbers are employed to encode and 

predict experimental information is the central topic of an introductory quantum mechanics course, and 

thus beyond the scope of these notes.  However, we do wish to touch on the topic of simple quantum 

waves, since they share a considerable formal overlap with the complex exponential mapping of classical 

waves, an overlap which can often lead to considerable conceptual confusion for students both during and 

after their introduction to the formalism of quantum mechanics. 

Quantum mechanics posits that, in the ideal, isolated case, every object is associated with a typically 

complex-valued wavefunction over space and time 𝛹(𝑥, 𝑡).
6
  The physical meaning of this wavefunction 

itself is a hotly debated topic, but at minimum it is generally agreed that it serves as a way of encoding 

information about possible outcomes of measurements made on the object it is associated with.  As an 

example, if one measures the position of an object, the outcome of this measurement is not deterministic; 

rather, the probability of finding the object at time 𝑡 somewhere between 𝑥 = 𝑎 and 𝑥 = 𝑏 is given by the 

integral ∫ 𝑃(𝑥, 𝑡)𝑑𝑥
𝑏

𝑎
, where 𝑃(𝑥, 𝑡) is a function known as the probability density of the object’s 

location.  The relation between this probability density and the object’s wavefunction is simply 𝑃(𝑥, 𝑡) =

|𝛹(𝑥, 𝑡)|2. 

One of the simplest class of wavefunctions is that of a free particle, so called because the object is 

subjected to no outside forces.  The simplest free particle wavefunction has the form 

𝛹(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) , 

                                                      
6
 As with our discussion of functions describing classical waves, we focus on one-dimensional waves for simplicity. 
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where 𝑘 and 𝜔 are real constants, but 𝐴 can be complex.  Note that this wavefunction is formally identical 

to the complex mapping of a cosine describing a classical harmonic wave ℎ(𝑥, 𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡 + 𝜑) 

→ ℎ̃(𝑥, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑥−𝜔𝑡).  While there are important historical and physical reasons why these two 

expressions are identical, it is imperative for one to be aware of the differences in what they mean and 

how they are used in order to avoid erroneously applying intuitions developed about the classical wave to 

the quantum one. 

In the classical case, the real amplitude 𝐴 corresponds to a physical quantity such as air pressure (sound 

waves), water height (water waves), or electric field (light waves).  The wave itself is an oscillation of this 

quantity in space and time, with the positive constants 𝑘 and 𝜔 specifying the spatial and temporal 

periodicities of these oscillations respectively.  The minus sign in the 𝑘𝑥 − 𝜔𝑡 expression results in the 

wave moving in the positive 𝑥 direction (a wave moving in the negative 𝑥 direction requires a plus sign).  

The time-averaged intensity, or energy density, carried by the wave is typically proportional to the square 

of the norm of the complex mapping, which for a harmonic wave is just the square of the amplitude, 

|ℎ̃(𝑥, 𝑡)|
2

= |𝐴̃|
2
. 

For the quantum wave, as intimated above, the possibly complex amplitude 𝐴 itself has no apparent 

physical interpretation.  Nor is the complex exponential standing in for a real cosine function that 

corresponds to something physical – rather the imaginary piece is equally indispensable when using the 

wavefunction in established quantum algorithms.  In particular the probability density for this free particle 

is 𝑃(𝑥, 𝑡) = |𝛹(𝑥, 𝑡)|2 = |𝐴|2.  This result is formally similar to the classical wave’s time-averaged 

intensity, but there is no explicit time-averaging taking place.  More surprisingly, this probability density 

is a constant independent of space and time, so a free particle described by a complex exponential is at 

any moment equally likely to be found anywhere.  Consequently there is nothing dynamic, wave or 

particle, that is ‘moving to the right’ for an object described by this wavefunction; rather, it describes 

what is known as a stationary state.
7
  Despite this fact, the formal analogy with the classical wave is so 

strong that many authors misleadingly refer to objects described by this complex exponential as “moving 

to the right.”  The reader is strongly advised to resist the physical picture this phrase implies when 

developing their intuitions about quantum behavior. 

 

                                                      
7
 To quantum mechanically describe a free particle moving to the right requires a superposition of these complex 

exponential wavefunctions. 


