Physics 241, Fall 2015 Modern Physics Hal M. Haggard

Homework 10
Due Friday, December 11th in class

Problem 1 (Two body Hydrogen)

When we studied hydrogen we pretended that the nucleus did not move at all while the electron
orbited it. How good of an approximation is this? This problem tackles that question. What if we
treated a system with a lighter substitute for the nucleus, like positronium which is made up of an
electron and a positron orbiting one another? Now that you have studied the quantum mechanics
of two particles interacting you can answer these questions.

Often the potential energy of two particles only depends on the separation 7 = 7} — 7 of the parti-
cles, V(71,7) = V(71 —72). Inspired by classical mechanics we can make a change of variables from
71 and 7 to the separation vector 7 and the center of mass vector R = (mi17] + mafs)/(m1 + ma).

Define the reduced mass by u = (mimsg)/(mi1 + mg). Then it is not too hard to show that

=R+ and 7o =R — if’,
ml ma

Vi=tEVer+V, and Vo=-Vi-V,.
mo my
(You should convince yourself of these facts at some point, but you do not have to show this for
this problem unless you want to.)

(a) Starting from the two particle Schrodinger equation

h? h?
g VI = 5oV + V(7L o) = B,

show that the (time-independent) Schrédinger equation becomes

h? 9 n? _,
—mV}W - ﬂvr%b + V(7)Y = EY.

(b) Separate the variables, letting ¥(R,7) = ¥r(R), (7). Note that 1 satisfies the one-particle
Schrodinger equation, with the total mass (m1 4+ m2) in place of m, potential zero, and energy
ER, while 9, satisfies the one-particle Schrodinger equation with the reduced mass in place of m,
potential V (7), and energy E,. The total energy is the sum: E = Er + E,. What this tells us
is that the center of mass moves like a free particle, and the relative motion (that is, the motion
of particle 2 with respect to particle 1) is the same as if we had a single particle with the reduced
mass, subject to the potential V. Exactly the same decomposition occurs in classical mechanics; it
reduces the two-body problem to an equivalent one-body problem. (Be sure to explain your logic
as well as the mathematics for this problem.)

(c) Find (to two significant digits) the percent error in the binding energy of hydrogen introduced
by our use of m instead of p.
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Problem 2 (Exotic atoms)

(a) Using the Rydberg formula that you studied in lab and the formula that we derived for the
Rydberg constant from the Bohr model of the atom, find the separation in wavelength between the
red Balmer lines (n = 3 — n = 2) for hydrogen and deuterium, which consists of a single electron
orbiting a nucleus made up of a proton and a neutron.

Using your results from Problem 1:
(b) Find the binding energy of positronium (in which the proton is replaced by a positron—
positrons have the same mass as electrons, but opposite charge).

(c) Suppose you wanted to confirm the existence of muonic hydrogen, in which the electron is
replaced by a muon (same charge, but 206.77 times heavier). Where (i.e. at what wavelength)
would you look for the “Lynman-a” line (n =2 —n =1)?

Problem 3 (Normalization of identical particles)

(a) If ¢, and 1, are orthogonal, and both normalized, what is the constant A in the equation

Vi (21, 22) = Alpa(21)p(22) £ thp(21)Ya(z2)],
where the plus sign in the formula is used for bosons and the minus sign for fermions.

(b) If g = 9 (and it is normalized), what is A? (This case, of course, occurs only for
bosons. )

Problem 4 (Identical particles in a square well)

Imagine two noninteracting particles, each of mass m, in the infinite square well. If one is in
the state 1, (Equation 2.28 of our excerpt), and the in state ¢y (¢ # n), calculate {(x; — x2)?),
assuming (a) they are distinguishable particles, (b) they are identical bosons, and (c) they are
identical fermions.

Problem 5 (Electron configurations)
Figure out the electron configurations, in the notation (1s)?(2s)2---, for the first two rows of the
Periodic Table (up to neon).



