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Modern Physics
Day 37

Today

I. Last Time
II. Averages in Boltzmann’s Approach
III. States for Light in a Box and Their
Energies
IV. The Spectral Energy Density of a
Photon Gas

I. Last Time

Hal had an error in his notes. He apologizes profusely! Please correct
in your notes (and Hal has corrected the slides). In the discussion of
the Wien law the expression should have read

u(T, λ) =
1

λ5 φ(λT) =
1

λ5
A

e
b

λT − 1

with a 1/λ5, not a 1/λ3. Our other results on the box of thermal
radiation so far are: the equation of state

P =
1
3

U
V

=
1
3

u(T),

and the Stefan-Boltzmann law

u(T) =
∫ ∞

0
u(T, λ)dλ = AT4.

We began to consider radiation in thermal equilibrium with a
reservoir at constant temperature T. Using what we had understood
about entropy we showed that in these circumstances the probability
of any state at fixed energy Es was given by

P(Es) =
e−

Es
kT

Z
,

where we had argued that Z is a normalization constant that makes
this truly a probability, but we hadn’t yet found a formula for Z. This
is our first order of business today.

Our main goal for today will be to derive Planck’s guess for the
black body spectrum, which had the form specified above

u(T, λ) =
1

λ5 φ(λT) =
1

λ5
A

e
b

λT − 1
.

The argument is a lovely synthesis of all of the ideas that we have
explored in the course: it touches on light as a particle (which we saw
in relativity) with E = pc; we will use our understanding of light
as a wave (which we explored in the waves portion of the course)
that causes charged particles to oscillate; we will use all the tools in
thermal physics that we have built up over the last several weeks;
and finally, this argument opens up an exploration of Quantum
Mechanics, which we will spend the last two weeks of the course
exploring.
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II. Averages in Boltzmann’s Approach

Let us return to our discovery that a system containing a thermal gas
of photons in contact with a constant temperature reservoir can be
described in terms of probabilities with

P(Es) =
e−

Es
kT

Z
.

Our first order of business is to find the constant Z. But, we know
that if we add up over all possibilities the probability of that possibil-
ity that we must get 1, so

1 = ∑
s

P(Es) = ∑
s

e−
Es
kT

Z
.

In the last sum, Z is a constant and so we can pull it out of the sum
to find

1 =
1
Z ∑

s
e−

Es
kT ,

and solve this equation for Z, giving

Z = ∑
s

e−
Es
kT .

Of course, we can’t always carry out the sum over all states (although
we will be able to do so in today’s example), but when we can, the
resulting formula is astoundingly useful. In fact, an example of why
these tools are useful presents itself immediately.

On last week’s homework you studied the fact that we can use
probabilities to express averages in a simple form. For example, to
compute the average energy we can write

E = ∑
s

EsP(s).

Using our probability results from above we find that we can write
this average energy in the form

E = ∑
s

Es
e−

Es
kT

Z
=

1
Z ∑

s
Ese−

Es
kT =

∑s Ese−
Es
kT

∑s e−
Es
kT

.

This formula shows that if we can figure out all the configurations of
the photons in our box and their energies, then we can compute their
average energy completely from scratch. It’s not easy to figure out
these states and energies, but it’s well worth the effort.

III. States for Light in a Box and Their Energies

Let us first consider the case of a one-dimensional box. As we have
already discussed, we can think of the box as having reflecting walls.
This leads to the waves that persist being standing waves.

Figure 1: A 1D well with standing
waves.
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What are the wavelengths of these waves? We have

λ1 = 2L =
2L
1

, λ2 =
2L
2

, λ3 =
2L
3

, . . . .

In general, then

λn =
2L
n

or kn =
2π

λn
=

nπ

L
.

In 3D, things get a bit more complicated because we can have differ-
ent numbers of nodes (or antinodes) in each direction: kx = nxπ/L,
ky = nyπ/L, and kz = nzπ/L. So we have

λ(nx ,ny ,nz) =
2π

|~k|
=

2π√
k2

x + k2
y + k2

z

=
2L√

n2
x + n2

y + n2
z

.

Notice that at larger and larger ni there are more and more different
wavelengths and hence different states of the light. We can estimate
the total number of such states in a small interval of wavelength dλ

based on units
# states ∼ V

λ3
dλ

λ
.

A slightly more rigorous treatment shows that there is a factor from
the surface area of a sphere, 4π, in this formula. Also, to account for
all possible states we need to account for the fact that light can have
two distinct polarizations. (Matt, I haven’t discussed polarization
with them at all.) Then, the total number of states per unit volume in
this interval is

# states
V

=
2 · 4π

V
V
λ3

dλ

λ
=

8π

λ4 dλ.

This tells us how many states are contributing in each interval dλ of
wavelength. Next, we need the revolutionary proposal that Planck
put forward.

Planck put forward that each of the allowed wavelengths could
contribute a very particular energy to the total energy of the radi-
ation. His proposal was that a constant with units distance times
momentum, Planck’s constant h, converted a standing wave’s wave-
length λ to the energy, and that for each of these wavelengths there
could be an integer number of such contributions

Eλ =
hc
λ

,
2hc
λ

, · · · ,
nhc
λ

.

This was a remarkable idea, that Planck wasn’t sure exactly how
to interpret. (This is closely related to Einstein’s explanation of the
photoelectric effect that you have been exploring in the lab and in
modern parlance we would say that n describes the “number of
photons" in each “mode". Notice that Planck’s proposal is equivalent
to our laboratory discussion E = nh f using f = c/λ.)

With this proposal in hand, we have everything we need to derive
the black body spectrum.
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IV. The Spectral Energy Density of a Photon Gas

In our treatment, the spectral energy density

u(T, λ) =
8π

λ4
∑∞

n=0
hnc
λ e−

hnc
λkT

∑∞
n=0 e−

hnc
λkT

is built from three pieces: (i) the first factor accounts for the number
of states of the light in the box in the interval dλ (The dλ doesn’t
appear in this formula because, as you will recall, we are computing
the “spectral" energy density, which is per unit wavelength; we will
add it back in any time that we want to integrate over some interval
of λ’s.), (ii) the first summand in the numerator, which gives the
number of units of energy that are currently in that wavelength, and
(iii) the probability of each of these states, which is encoded in the
exponential summand in the numerator and in the full denominator.
Notice the beautiful elegance of Boltzmann’s procedure and Planck’s
implementation: there can be any number n of energy units in a
given “mode" with wavelength λ, but as the number of units gets
large, the probability exponentially suppresses those states, which
indeed should be very improbable. Delightfully we can compute
everything in this formula!

Notice that the denominator is a geometric sum

∞

∑
n=0

e−
hnc
λkT =

∞

∑
n=0

(
e−

hc
λkT

)n
=

∞

∑
n=0

(
e−a)n

=
1

1− e−a =
1

1− e−
hc

λkT
.

While we can figure out the sum of the numerator, using the same
trick that we used for the Gaussian integrals of your most recent
homework. Taking a derivative of both sides of this result with
respect to a we find

∞

∑
n=0

n
(
e−an) = e−a

(1− e−a)2 .

Putting these results together gives the result we were trying to
derive(!)

u(T, λ) =
8πhc

λ5
e−

hc
λkT

1− e−
hc

λkT
=

8πhc
λ5

1

e
hc

λkT − 1
=

A

e
b

λT − 1
.
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