loday

I. Last Time

II. Office Hour Change Tuesdays, HW Folders, & Lab
II1. More on Spacetime (Minkowski) Diagrams

IV. Galilean and Lorentz Iransformations

[.  We finished deriving three of the four fundamental
consequence of Finstein's two postulates.

1. Relativity of simultaneity

2. 'Time dilation: At = yA?’

1
3. Length (or Lorentz) contraction: AL = —AL’
Y

4. You are deriving Einstein velocity addition on the homework.

2. and 3. are starting to hint that maybe space and time fit
together.



We won’t derive the 4th consequence here, you're doing 1t on your

homework. This 1s the Einstein velocity addition formula.

II1. More on Spacetime (Minkowski) Diagram
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[II. Spacetime (Minkowski) Diagram
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All of the diagrams that I've drawn so far are making reference to

to just one reference frame. Ultimately we want the dictionary that

connects different frames of reterence. This dictionary 1s called the

Lorentz transtormation.



IV. Galilean and Lorentz Transformations

—— +——
X X’
Frame § (“rest”, Frame S’ (“moving"

“oround”, “lab”) frame, “train”, “rocket”)

Event: particular spacetime locations (x,y,z) and ¢ (all in §).
Question: What are the coordinates (x',y’, z,t') of the SAME
EVENT in S§7?

Let's assume that frame §’ moves at speed v (const.) relative

to S, along the x-axis.



IV. Galilean and Lorentz Transformations
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Initially Frame S’ (“moving"

frame, “train”, “rocket”)

Let's assume that frame §’ moves at speed v (const.) relative
to S, along the x-axis. At the instant the two origins coincide,

we set the two master clocks to zero. After ime ¢, the origin

ol S’ has moved a distance vr.



IV. Galilean and Lorentz Transformations
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Initially Frame S’ (“moving"
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frame, “train”, “rocket”)

For Galilean transtformations we have

X' =x—-vt
y =y
7=z

=1t



'T'he Lorentz 'Iransformations
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Initially Frame S’ (“moving"
frame, “train”, “rocket”)
Take perspective of S. The Galilean “x” failed to account for

length contraction. Moving objects are shorter than in their
rest frame, so

x'=y(x—vi)
, V
y' =y, 7/ = z. Not done yet(!), need time ¢ = y(¢ — —zx)
C



'T'he Lorentz 'Iransformations
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Initially Frame S’ (“moving"

frame, “train”, “rocket”)

. : V :
Let’s derive this: ' = y(¢ — —Zx). Inverse transtormation ot

C
position: x = y(x' + vt') = y[y(x — vt) + vt'] = y°x — y*vt + yvt'.
yvt' = (1 — y2)x + y°vt
_ 1=y

YV

Z_/

X+ yt



'T'he Lorentz 'Iransformations

: : V .
Let’s derive this: ¢ = y(t — —2x). Inverse transformation ot
C

position: x = y(x’ + vt') = y[y(x — vt) + vt'| = y*x — y>vt + yvt.

yvt' = (1 — yDx + y2vt

_ =7
YV

Focusing on the term 1n front of x

L=y _rl=v _r(L_N_r{,_»_,\__v
vV oy oy Y2 oy Y2 oy c? 2

Plugging this in gives

, YV . 1%
t—}/t—?x—}/ t-;x .

In summary, we have two results

.
xX'=y(x—vt) and. t' =y <t — —x)

t X+ yt
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