
I. Last Time 
II. Deriving the Diffusion Equation 
III. Where do waves come from? 

Today

I. Yanpei Deng this week due to exam (will help in the lab. She’s 
available MW from 7-8pm in Brody lab). 

This week: Antu Antu will be providing homework support. Hours 
are: Tu 8-9pm, Th10:30-11:30am, Th 8-9pm.  

Last time we discussed how the permittivity and permeability 
enter the wave equation for light:  

 (light speed in vacuum) or .c = 1/ ϵ0μ0 v = c/n ≈ c/ ϵr



I. Let’s connect the random walk that you studied on the 
homework to the diffusion equation: we’ve got a one dimensional 
line and because the walkers take discrete steps, they can only be 
located at discrete positions along the line, call the number of  
them at position i, . Let’s call the probability that a  
walker leaves its current location .  

Then the number walkers that go from position  to position , 
is  in time  and the number that go to  is  in time  

Ni(t)
p = RΔt

i i + 1
pNi Δt i − 1 pNi Δt

Ni(t + Δt) = Ni(t) − RΔtNi(t) − RΔtNi(t) + ⋯

Δt Δt



I. Meanwhile there are walkers that enter  from , and from 
. In total we have 

. 

Recall the definition of  : 

. 

Notice that  

i i + 1
i − 1
Ni(t + Δt) = Ni(t) − RΔtNi(t) − RΔtNi(t) + RΔtNi−1(t) + RΔtNi+1(t)

f(x)
df
dx

≡ lim
Δx→0

f(x + Δx) − f(x)
Δx

Ni(t + Δt) − Ni(t)
Δt

= − RNi(t) − RNi(t) + RNi−1(t) + RNi+1(t)

Δt Δt



II.  
Notice that  

 

[N.B.: The notation is a bit asymmetric. We’re treating t as the 
argument of  the function  and  as label. We could think of   as 
another argument of  the function .] 

In the limit of  small  and small  we get  

, 

where the 2nd line defines the “diffusion constant” .  If  you look 
in the literature this “diffusion equation” is often described in terms 
of  the “concentration” of  the molecules .

Ni(t + Δt) − Ni(t)
Δt

= RΔx2 ((Ni+1(t) − Ni(t)) − (Ni(t) − Ni−1(t)))
Δx2

= RΔx2
(

(Ni+1(t) − Ni(t))
Δx −

(Ni(t) − Ni−1(t))
Δx )

Δx

N(t) i i
N(t, i)

Δt Δx
∂N
∂t

= RΔx2 ∂2N
∂x2

≡ D
∂2N
∂x2

D

c = N/Vbox



II.  

In the limit of  small  and small  we get  

, 

where the 2nd line defines the “diffusion constant” .  If  you look 
in the literature this “diffusion equation” is often described in terms 
of  the “concentration” of  the molecules . The diffusion 
equation, after division by , is 

. 

Let’s transition into a deeper study of  waves and waves in materials.  
III. Where do waves come from? Are they really the result of  
discrete particle motion? 

Δt Δx
∂N
∂t

= RΔx2 ∂2N
∂x2

≡ D
∂2N
∂x2

D

c ≡ N/Vbox
Vbox

∂c
∂t

= D
∂2c
∂x2



Let’s transition into a deeper study of  waves and waves in materials.  
III. Where do waves come from? Are they really the result of  
discrete particle motion?  

Usually a piece of  solid is not moving. Then the constituent masses 
are at rest. For them to be at rest they must be at a stable 
equilibrium, that is, at a minimum of  the potential energy 

m

x

U(x)
F(x) = −

dU
dx

Stable equilibrium x

U(x)

Unstable equilibrium



III. In general, we can find equilibria by  

, 

These equilibria will be stable if   

, and unstable if   .  

Let’s consider a completely general potential  

We can expand  around  using Taylor expansion: 

 

dU
dx

= 0

d2U
dx2

> 0
d2U
dx2

< 0

U(x)

U(x) x0

U(x) = U(x0) + U′ (x0)(x − x0) +
1
2

U′ ′ (x0)(x − x0)2 + ⋯ +
1
n!

U(n)(x0)(x − x0)n⋯

F(x) = −
dU
dx

x

U(x)

x0



III. What’s an example  of  all of  this?  
We can expand  around  using Taylor expansion: 

  

Well, this should work for a harmonic oscillator:  

, then  

. 

In the real world a potential only links “harmonic” , that is, like a 
spring for part of  the range of  its  variable.  
To calculate the “spring constant” of  a harmonic potential , all I 

need to do is compute .

U(x) x0

U(x) = U(x0) + U′ (x0)(x − x0) +
1
2

U′ ′ (x0)(x − x0)2 + ⋯ +
1
n!

U(n)(x0)(x − x0)n⋯

U(x) =
1
2

kx2

U(x) =
1
2

k(0)2 + k(0)(x − 0) +
1
2

k(x − 0)2 =
1
2

kx2

x

k =
d2U
dx2

x0


