
I. Days that we’ll be taking a break: A week from this Friday, Oct 
23rd there will be no class or homework meetings, Wed Nov 25th 
also no class, or Fri Nov 27th.  

II. Last Time 
III. Derivation of  the Wave Equation

Today

I. Yanpei Deng this week due to exam (will help in the lab. She’s 
available MW from 7-8pm in Brody lab). 

This week: Antu Antu will be providing homework support. Hours 
are: Tu 8-9pm, Th10:30-11:30am, Th 8-9pm.  

II. We discussed and derived the diffusion equation.  

, where  is the concentration  and  is the 

“diffusion constant” with units meters squared per second. 

∂c
∂t

= D
∂2c
∂x2

c c = Ni /Vbox D



I. We reviewed Taylor expansion in the context of  potential 
energies and, in particular, around a stable equilibrium: near a 
stable equilibrium we can approximate any system whatsoever 
as being nearly a harmonic oscillator!  

A chunk of  material on the table is certainly in a stable 
equilibrium. Then all of  its constituents can be modeled as if  they 
were connected by springs. In a real material these forces will be 
electrical, but I can still model them as springs.  
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III. Consider a massive rod of  length  and mass . We’ll model it 
as a collection of   masses, each one of  mass , connected via 
massless identical springs of  spring constant . In equilibrium our 
masses will be equally spaced with separation .  

Let’s call  the displacement of  the mass at position  in the 
chain. We’ll analyze this chain using Newton’s 2nd law. Let’s first 
analyze what the left spring does: 

 or in general  
 or in general  
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ψ(xn, t) xn

FL = − k[ψ(x2, t) − ψ(x1, t)] FL = − k[ψ(xn, t) − ψ(xn−1, t)]
FR = k[ψ(x3, t) − ψ(x2, t)] FR = k[ψ(xn+1, t) − ψ(xn, t)]

F = k[ψ(xn+1, t) − ψ(xn, t) − (ψ(xn, t) − ψ(xn−1, t))] = man = m
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III. 

Let’s call  the displacement of  the mass at position  in the 
chain. We’ll analyze this chain using Newton’s 2nd law. Let’s first 
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III. 

 

 

Before we can take any limits, we have to organize things carefully. 
Recall that in the setup our rod had a length  and  masses, then  

. We also had , so that . This means that 

, where  is the “spring 

constant of  the whole rod” (from addition of  springs in series). 
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III. 

 

 

This means that 

. 

Putting this all together and taking the limit  gives 

. The speed is .
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