
I. Upcoming exam, this Friday, Nov 6th. 
II. Last Time 
III. Heat Capacity of  Ideal Gases 
IV. Adiabatic Expansion of  an Ideal Gas

Today

I. Yanpei Deng this week due to exam (will help in the lab. She’s 
available M from 7-8pm in Brody lab). 

This week: Antu Antu will be providing homework support. Hours 
are: Tu 8-9pm, Th 8-9pm. 



II. We discussed the example of  unfair footrace to illustrate 
inexact differentials:  

1. The integral of  an inexact differential doesn’t just depend on 
the endpoints. Instead you have to give information about the 
entire history of  how you got between the endpoints.  

(Some quantities are process dependent, some quantities are not 
“state functions”, etc. ) 
2. For exact differentials we have the fundamental theorem of  
calculus (FTIC) 

. 

For inexact differentials we have no such result.  

We discussed heat capacities:  and 
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II. 

We discussed heat capacities:  and  

.  

In terms of  more familiar units 1 cal = 4.184 J.  

III. Let’s consider the heat capacity of  gases. First let’s take our 
gas to have a constant volume: 

. 

In the limit of  very small changes we have  

. 

Let’s take the case of  monatomic ideal gas: 
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III. Let’s consider the heat capacity of  gases. First let’s take our 
gas to have a constant volume: 

. 

In the limit of  very small changes we have  

. 

Let’s take the case of  monatomic ideal gas:  

Let’s predict the heat capacity at constant volume: 

.  

More common in the laboratory is to fix the pressure of  a gas:  

. 

Again taking the limit gives: 
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III.  

Let’s predict the heat capacity at constant volume: 

.  

More common in the laboratory is to fix the pressure of  a gas:  

. 

Again taking the limit gives:  

Applying this to an ideal gas gives (  or ): 

. 

IV. Adiabatic expansion of  ideal gases: coolers or any form of  
insulation prevents the exchange of  heat between what’s inside 
and what’s outside. The point is to get no heat exchange!  
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IV. Adiabatic expansion of  ideal gases: coolers or any form of  
insulation prevents the exchange of  heat between what’s inside 
and what’s outside. The point is to get no heat exchange! This is 
what we mean by an adiabatic process, .  

Let’s consider an expansion of  an idea gas, but in the very special 
circumstances where no heat flows in or out. How are pressure 
and volume related in these circumstances?  

Again, the internal energy is , then  

 .  

According to the first law of  thermodynamics 
.  

Setting these equal gives…
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IV. Again, the internal energy is , then  

 .  

According to the first law of  thermodynamics 
.  

Setting these equal gives… 

.  

We can cancel , and divide by  to get 

. 

Integrating both sides gives 

 or .  

Then , or more generally . 
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IV. Then , or more generally .  

Can we express this as a relationship between  and ? From the 
ideal gas law we have  or  and plugging this 
in gives 

 or taking the 2/fth root we have 
 ,  

where . This allows us to make a direct comparison 
with the isothermal process, we have 

, with . 

Consider a process at constant temperature (an isothermal 
process): 

. 
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IV. This allows us to make a direct comparison with the 
isothermal process, we have 

, with . 

Consider a process at constant temperature (an isothermal 
process): 
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