loday

I. Note unusual homework due date/time; two more hw sets; take

home due at end of completion days
II. Last Time
[I1. Statistical Mechanics and Equilibrium

IV. Boltzmann’s Procedure

V. Kinetic Theory of a Gas of Photons

I. Last ime we talked about microstates, macrostates, and

multiplicity.

These definitions allow us to compute the entropy of the system:
S = kln Q.



II. When we put the particles out on a line we get N! permutations

of them. P
We next select N; particles to put M e M @
on the left side of the box. .
N! N! N
N;!Np!  N;!(N—N;)! N;
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10! is so big that we can’t really deal with it analytically.

Suppose: N 1s large, and the “imbalance” s 1s a small fraction of N

N , 2s
N; = > + 5, or more precisely ~ =x < 1.




10%! is so big that we can’t really deal with it analytically.

Suppose: N 1s large, and the “imbalance” s 1s a small fraction of N

N 2s
N; = 5 + 5, or more precisely ~ = =x < 1.

We’ll be using Stirling’s approximation:

N! ~ /272N e NNV

II1. Applying these two approximations to our multiplicity
Q(N, N;) we get

N
Q( N, NL) ~ 2 2 2N —2xs+N x2 2N
V 7N (e N/2 ex \/ N VN

Remarkably this allows us to describe the probability of any

fiouration PN N,) = P(N. ) = — 2 5
configuration : = S)=— =4 /—e N
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II1. Applying these two approximations to our multiplicity
Q(N,N;) we get

2 2 N .2 2 242
Q N,N ~ 2Ne—2xs+7x — _ZNe—T
(N, Np) VnN( N/2< x) V]Z'N VnN

Remarkably this allows us to describe the probability of any

fiouration POV N,) = P(N. 5) = — 2 %
confiouration : = S)=— =41 /—e V.
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It you study this distribution for larger and large N you find that 1t

gets narrower and taller. What we’re seeing 1s that as N gets large
the fluctuations decrease. This 1s a generic property of thermal
equilibrium and 1t 1s why we talk about “the equilibrium” of the
system.

Notice that we can also compute the entropy of this binary model:

> s
S = kln (\ /—2Ne—%>.
N



I'V. We’re going to use all of these tools to study thermodynamics

of all kinds of systems. Overview of how to use 1t:
Steps: Calculate the multiplicity for the system you care about €

Get Entropy: S = kIn Q

1 A
Get lemperature: — = | —
T ou /.,

o —E/KT

Boltzmann Probability: P(j) =

PR j labels a particular state of

your system and E; 1s the energy of that state. Here Z1s called the

partition function and 1s defined by a sum over all states
/7 = Z e 5% and guarantees that Z P(j) = 1.
J J



IV. Let’s prove one ot these steps:

1 IA)
Get lemperature: — = | —
T ou /.,

The 1st law states
dQ = dU — dW = dU + PdV,

And dividing through by the temperature we have

do 1 P 1 P
= = —dU+—=dV or dS=—dU+—=—dV.
T T T T T

We can find (0S/0U) by holding the volume fixed and dividing by
dU,
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IV. Returning to the main theme of our course, let’s consider a gas

of photons 1n a box at temperature T.

“A box of light at temperature T . It will be convenient to

U
introduce the energy density u(7T) = A

Light has energy, but also momentum. For light with energy E we
have p = E/c. Since they have momentum, the light particles exert

a force on the walls of the box, which leads to a pressure.



Light has energy, but also momentum. For light with energy E we
have p = E/c. Since they have momentum, the light particles exert

a force on the walls of the box, which leads to a pressure.

Consider a cubical box with side length L and hence volume

V = L°, then radiation at a constant temperature T, will also have
u(T) constant. The speed of a photon at angle 6 1s ccos 8, and it
will hit the right wall every 2L/(c cos €) seconds.



