
I. Note unusual homework due date/time; two more hw sets; take 
home due at end of  completion days 

II. Last Time 
III. Statistical Mechanics and Equilibrium 
IV. Boltzmann’s Procedure 
V. Kinetic Theory of  a Gas of  Photons

Today

I. Last time we talked about microstates, macrostates, and 
multiplicity.  

These definitions allow us to compute the entropy of  the system:  
.S = k ln Ω



II. When we put the particles out on a line we get  permutations 
of  them.  
We next select  particles to put  
on the left side of  the box.  

 

 

 is so big that we can’t really deal with it analytically.  

Suppose:  is large, and the “imbalance”  is a small fraction of   
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 is so big that we can’t really deal with it analytically.  

Suppose:  is large, and the “imbalance”  is a small fraction of   

, or more precisely . 

We’ll be using Stirling’s approximation: 
.  

III. Applying these two approximations to our multiplicity 
 we get 

 

Remarkably this allows us to describe the probability of  any 

configuration 
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III. Applying these two approximations to our multiplicity 
 we get 

 

Remarkably this allows us to describe the probability of  any 

configuration . 

If  you study this distribution for larger and large  you find that it 
gets narrower and taller. What we’re seeing is that as  gets large 
the fluctuations decrease. This is a generic property of  thermal 
equilibrium and it is why we talk about “the equilibrium” of  the 
system.  
Notice that we can also compute the entropy of  this binary model:  

.

Ω(N, NL)

Ω(N, NL) ≈
2

πN
2N

(e−x2)N/2 ( e−x

ex )
s

=
2

πN
2Ne−2xs+ N

2 x2 =
2

πN
2Ne− 2s2

N

P(N, NL) = P(N, s) =
Ω
2N

=
2

πN
e− 2s2

N

N
N

S = k ln ( 2
πN

2Ne− 2s2
N )



IV. We’re going to use all of  these tools to study thermodynamics 
of  all kinds of  systems. Overview of  how to use it: 

Steps: Calculate the multiplicity for the system you care about  

Get Entropy:  

Get Temperature:  

Boltzmann Probability: ,  labels a particular state of  

your system and  is the energy of  that state. Here  is called the 
partition function and is defined by a sum over all states 

 and guarantees that . 
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IV. Let’s prove one of  these steps: 

Get Temperature:  

The 1st law states  
, 

And dividing through by the temperature we have  

    or   . 

We can find  by holding the volume fixed and dividing by 
, 

   or . 
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IV. Returning to the main theme of  our course, let’s consider a gas 
of  photons in a box at temperature .  

“A box of  light at temperature  ”. It will be convenient to 

introduce the energy density .  

Light has energy, but also momentum. For light with energy  we 
have . Since they have momentum, the light particles exert 
a force on the walls of  the box, which leads to a pressure. 
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Light has energy, but also momentum. For light with energy  we 
have . Since they have momentum, the light particles exert 
a force on the walls of  the box, which leads to a pressure.  

Consider a cubical box with side length  and hence volume 
, then radiation at a constant temperature , will also have 

 constant. The speed of  a photon at angle  is , and it 
will hit the right wall every  seconds.  
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