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I. See below



IV. Returning to the main theme of  our course, let’s consider a gas 
of  photons in a box at temperature .  

“A box of  light at temperature  ”. It will be convenient to 

introduce the energy density .  

Light has energy, but also momentum. For light with energy  we 
have . Since they have momentum, the light particles exert 
a force on the walls of  the box, which leads to a pressure. 
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Light has energy, but also momentum. For light with energy  we 
have . Since they have momentum, the light particles exert 
a force on the walls of  the box, which leads to a pressure.  

Consider a cubical box with side length  and hence volume 
, then radiation at a constant temperature , will also have 

 constant. The speed of  a photon at angle  is , and it 
will hit the right wall every  seconds.  
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  (for 1 photon) 
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II. Spherical Coordinates 
Polar angle:  
Azimuthal angles: ,  
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In general, we will get photons contributing in every direction 

; 

  (for 1 photon) 

We can find the total pressure by integrating up the contributions 
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Switch from  to just  and from  to : 

. 

Let’s compare this to what we learned for the ideal gas 

, 

. 
Then  

. 

Today I want to use without proof  the Gibbs-Duhem relation: 

.
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Switch from  to just  and from  to : 

. 

Today I want to use without proof  the Gibbs-Duhem relation: 

. 

Divide everything by the volume 

, 

Next divide both sides by  to get  

.
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Next divide both sides by  to get  

. 

Move one term to the other side to get 

 

And integrate both sides 

. 

Exponentiating both sides gives 
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