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Today

I. We studied gas of  photons, reviewed spherical coordinates, 
and were able compute 

! .  

We also found a relationship between energy density and 
temperature: 

! .  
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II. At the dawn of  the 20th century researchers were deeply 
intrigued by this “black body” radiation: 

!    “Stefan-Boltzmann Law” (1879, 1889) 

This “spectral energy density” depends on  wavelength and 
temperature in a very particular way, that is, through the product 
! , at least after you factor out a term: 

! . (Note: I goofed the factor in class. Sorry!) 

They had a nice concrete way of  thinking about this: how does 
the maximum of  the spectral energy density vary with 
temperature? The max wavelength moves linearly with 
temperature, “Wien displacement law”. At the turn of  1900 no 
one knew the functional form of  !  or equivalently of  ! . 
Lots of  people had thought about it and good suggestions for …
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II. Lots of  people had thought about it and good suggestions for 
the long wavelength limit had been made (Rayleigh-Jeans).  In 
1900 Planck guesses the right functional form: 

! .  

Planck writes a remarkable paper that introduces a new constant 
with units of  position times momentum, ! , and this eventually 
leads to the introduction of  quantum mechanics. This paper 
derives the functional form for the black body “energy spectral 
density” above.
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II. A more careful plot of  the black body spectrum and its 
dependence on Temperature. 



III. Equilibrium at a constant temperature. You can think 
thermodynamics as a bridge from the microscopic to the 
macroscopic. In particular 

!  can be seen as the total energy of  the micro constituents 
!  average kinetic energy of  micro constituents 
!  average momentum transfer from the micro constituents 
!  a count of  all microstates consistent with the macroscopic 
configuration (up to this point usually characterized by ! ).  

We say that our system is in contact with a “Temperature 
reservoir” when it exchange energy with a big “reservoir system 
that is at a fixed temperature ! .  
Our idealization is that the 
reservoir is so big that it doesn't  
change temperature when it exchanges energy.  
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III. Equilibrium is characterized by the maximum entropy of  the 
reservoir plus box system.  

According to Boltzmann: ! , turning this around we can 
solve for the multiplicity ! .  

Boltzmann’s insight was that every state that is allowed is equally 
probable. This means that we can study 

! . 

Recall our relationship for thermodynamics 

! , 

For small changes in volume  
!
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III. Boltzmann’s insight was that every state that is allowed is 
equally probable. This means that we can study 

! . 

Recall our relationship for thermodynamics 

! , 

For small changes in volume ! , and we have  

! . 

We also have conservation of  energy, ! , so  
!
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III. Plugging in our result from conservation of  energy we have: . 

! . 

We can interpret this result as saying that the relative probability 
of  states at different energies is exponentially related to their 
energy. Specifically,  

! ,  

Where !  is unknown constant that normalizes the probability. 
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