
I. Last Time 
II. Wrap up Discussion of  Schroedinger Equation 
III. The Infinite Square Well

Today

I. Introduced operators, which acted on the waves and returned 

physical values: e.g.   (recall [ ] =  m kg m/s).  

 

This is the time-dependent Schroedinger equation.  We also had  

 (the time-indep. Sch. Eq.) 
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II. Today we're going to study an example called teh infinite 
square well: 

As an equation we can write this in the following form: 

. 

For this potential we can focus our study of  the Sch. Eq. to the 
interior of  the box. 

V(x) = {0, if 0 ≤ x ≤ a,
∞, otherwise .

V(x)

x
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V = ∞ V = ∞

V = 0



II.  Where  we have  

, 

or  

.   (Here ) 

(Recall the harmonic oscillator had Newton's equation give by 

. 

With solutions . ) Then 
. (check it!) 

In addition to the Sch. Eq. , we have boundary conditions which 
are 

   and   . 
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2mE
ℏ

d2x
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= − ω2x

x(t) = A cos(ωt) + B sin(ωt)
ψ(x) = A sin(kx) + B cos(kx)

ψ(x = 0) = 0 ψ(x = a) = 0



II.  Then 
. (check it!) 

In addition to the Sch. Eq. , we have boundary conditions which 
are 

   and   .  
Plugging in  gives, 

. 
We must have . Then,  

. 
We still have the boundary condition at , 

. 
Instead of  fixing , which is boring, we choose 

. 
In other words, only certain ’s work  

.

ψ(x) = A sin(kx) + B cos(kx)

ψ(x = 0) = 0 ψ(x = a) = 0
x = 0

ψ(0) = A sin(0) + B cos(0) = B = 0
B = 0

ψ(x) = A sin(kx)
x = a

ψ(a) = A sin(ka) = 0
A = 0
ka = nπ, n = 0, ± 1, ± 2, ± 3,⋯
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, with n = 1,2,3,⋯ .



II.  In other words, only certain ’s work  
. 

Physically this amounts to a requirement of  only particular 
energies: 

. 

Solving for the energy we get 

. ( ) 

Returning to our wave function we have  

, . 
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, with n = 1,2,3,⋯ .
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ψ(x) = A sin ( nπ
a

x) n = 1,2,3,⋯

|ψ(x) |2 = probability density for particle position
a

n = 1
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n = 3


