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1 Some Mathematical Preliminaries

There is some messy-ish math that comes up in this derivation. Rather than pause in the
logical flow when the steps come up, I will collect these ideas first and refer to them when I
need them.

1.1 Geometric Sums

You probably learned this in Math Methods, but it is so useful that I repeat it in some detail.
Consider the sum of a series of terms that are just consecutive powers of the same base, y,

SN = 1 + y + y2 + . . . + yN−1 =
N−1∑
n=0

yn . (1)

We can evaluate this by a cute multiplication-and-subtraction trick,

SN = 1+y + y2 + . . . + yN−1

multiply by y : y · SN = y + y2 + . . . + yN−1 + yN

subtract, most terms cancel (1− y) · SN = 1− yN =⇒ SN =
1− yN

1− y
. (2)

Of special interest to us is the case when | y | < 1,

for | y | < 1 , yN → 0 as N → ∞ , so,

S = lim
N→∞

SN =
∞∑
n=0

yn =
1

1− y
. (3)

I can get a second infinite series sum by taking the derivative of S WRT y,

take derivative of both sides of Eqn. (3),
d S

d y
:

∞∑
n=0

n · yn−1 =
1

(1− y)2

multiply by y : y + 2 y2 + 3 y3 + · · · =
∞∑
n=0

n · yn =
y

(1− y)2
. (4)

1.2 Energies and exponents

I want to give advice to simplify your life when dealing with the myriad of formulas that
you encounter in Modern Physics: Get variables into units of energy when you can.
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All of these quantities have units of energy,

Thermal Energy: k T

Photon Energy; h f = h̄ ω = h̄ k =
h c

λ
.

So, the quantity h f
k T

= h c
λ k T

is dimensionless, and so is a suitable exponent for e.

You have learned about the Boltzmann factor that determines the relative likelihood for
the population of different energy states. That is, given two possible energies for a system,
E1 & E2, their populations have the ratio,

P (E) ∝ e−E /kT =⇒ P (E1)

P (E2)
=

e−E1 / kT

e−E2 / kT
= e−(E1−E2) / kT . (5)

This captures two essential ideas:
. (1) higher energy states are less likely to be populated (no matter what T is), and
. (2) as T increases, populating higher energy states becomes easier.

1.3 Switching from λ to f

When dealing with an energy density, you will always be measuring it over a finite range of
frequencies or wavelengths, a df or dλ. Think of it as the range of light that the aperture on
the spectrometer allows in. The energy density expression can be written in terms of either
f or λ, but switching between them includes a non-intuitive factor. But, paying attention to
units saves us. I give the two u expressions subscripts to be super-clear, but generally you
call the density u and pay attention to argument to tell which variable is in play:

Total energy: [U ] = Energy .

Energy per unit volume: [u(T ) ] = Energy / V olume .

Energy/Volume within df : [uf (T, f) · df ] = Energy / V olume .

Energy/Volume within dλ : [uλ(T, λ) · dλ ] = Energy / V olume .

So, switching between them involves a derivative,

uλ(T, λ) · dλ = uf (T, f) · df =⇒ uλ(T, λ) = uf (T, f) · df
dλ

and f =
c

λ
=⇒ df

dλ
= − c

λ2
. (6)

So, the energy density over the entire range is found from either integral,

u(T ) =

ˆ ∞
f=0

uf (T, f) df =

ˆ ∞
λ=0

uλ(T, λ) dλ . (7)

The − sign in Eqn. (6) compensates for the change in integration direction (as f ↗ , λ↘).
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2 Last Time

2.1 Energy density results

Thanks to the theoretical treatment of Wilhelm Wien, we know that the energy density
should depend not on T and λ independently, but partly on their product

u(T, λ) =
1

λ5
φ(λT ) .

[
Planck : φ(λT ) =

A

eb / λT − 1

]
. (8)

Note: Hal had an error in powers last time, having to do with the df/dλ factor I discussed
above. This is the correct formula, and he has included it in the slides, so update your notes.

You also showed that the equation of state for the box of thermal radiation (what we now
refer to as a photon gas) has a radiation pressure,

P =
1

3

U

V
=

1

3
u(T ) , (9)

and the energy density summed over all λ satisfies the Stefan-Boltzmann Law,

u(T ) =

ˆ ∞
λ=0

u(T, λ) dλ = A · T 4 . (10)

2.2 Distribution of energy states

The Boltzmann theory tells us that if a system is in thermal equilibrium with a heat reservoir
at temperature T , then the probability of the system having energy En is given by

P (En) ∝ e−En / kT =⇒ P (E) =
e−En / kT

Z
. (11)

For now, we treated the denominator Z as a normalization constant. Today, we will derive
an expression for it in this system.

Today’s main goal is to derive the Planck Radiation formula, namely the expression for
u(T, λ) in to quote Hal, who says it more eloquently than I could,
“The argument is a lovely synthesis of all of the ideas that we have explored in the course:
it touches on light as a particle (which we saw in relativity) with E = pc; we will use our
understanding of light as a wave (which we explored in the waves portion of the course) that
causes charged particles to oscillate; we will use all the tools in thermal physics that e have
built up over the last several weeks; and finally, this argument opens up an exploration of
Quantum Mechanics, which we will spend the last two weeks of the course exploring.”
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2.3 Finding Z

Suppose I told you, “there are two possible outcomes, and A is twice as likely as B.” What
are the probabilities of A and of B? Since P (A) + P (B) = 1 (total probability),

P (B) =
P (B)

1
=

P (B)

P (A) + P (B)
=

P (B)

2 · P (B) + P (B)
=

1

3
.

So, P (A) = 2
3

& P (B) = 1
3
.

The Boltzmann factor argument leaves us in a similar position, where we know the relative
magnitudes of the state probabilities, but not each probability by itself. And we solve it by
the same trick as the case above, adding up all the probabilities to 1.

Given a system with a set of possible energies {En }, each satisfying Eqn. (11), the sum of
all probabilities gives us

1 =
∑
all n

P (En) =
∑
all n

[
e−En/kT

Z

]
=

[∑
all n e−En/kT

]
Z

,

so Z =
∑
all n

e−En/kT , and P (En) =
e−En/kT∑
all n e−En/kT

(12)

I could pull Z out of the sum because it is the same constant for each P (En) term.

This Z sum is called the partition function. In many (most?) cases, you cannot actually
perform the sum, but Z is still remarkably useful in Statistical Mechanics. To take one
example relevant to today’s work, we find the average energy of a system by adding up all
the possible energies, weighting each one by its probability of occurring.

Ē =
∑
all n

[En P (En) ] =
1

Z
·
∑
all n

[En · e−En/kT ] . (13)

So, if we can figure out all of the energies for the photons in our box, then we can find the
probabilities and determine the average energy of the system.

3 Possible Energy States

We now have to find a way to identify all of the energy states of the blackbody system.
In doing this work around 1900, Max Planck was partly relying on his masterful command
of late-19th century theoretical physics (Electromagnetism, Statistical Mechanics, . . . ), and
partly making a bold new assumption that he, frankly, had no justification for. Buckle up.
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3.1 Energy states of EM waves

Planck modeled the blackbody as a hollow box filled with EM radiation, in thermal equi-
librium with the box walls, which is maintained at temperature T . For simplicity, we will
assume that the box is cubic, of side L, but it turns out the shape really does not matter.
The walls of the box are perfectly reflective, so any EM wave inside it must have 0-magnitude
at the wall. In one dimension, this would mean waves such a those shown in Figure 1.

Figure 1: Standing waves in a 1D well.

For a box of length L, the possible standing waves have wavelengths and wave numbers,

λ1 = 2L, λ2 =
2L

2
, λ3 =

2L

3
, . . . λn =

2L

n
, n = {1, 2, 3, . . . } . kn =

2π

λn
= n · π

L
. (14)

In 3D, there will be a standing wave in each xyz-direction, so the wave number is a vector,

~k(nx, ny, nz) = nx
π

L
x̂+ ny

π

L
ŷ + nz

π

L
ẑ; , |~k | =

√
n2
x + n2

y + n2
z

π

L
. (15)

λ(nx, ny, nz) =
2π

|~k |
=

2L√
n2
x + n2

y + n2
z

. (16)

We want to find how many states are there in a particular range of wavelengths, (λ, λ+ dλ).

To help with this argument, consider this question that came to me today. Suppose you
wanted to count how many cars there are on a freight train. You could walk the length of it
counting all the way, or you could use the mileage markers by the side of the track to find
the total length of the train, `, then divide by the standard car length, cl = 15m/car. So,
if the train were 1200m long, it would have # = ` / cl = (1200m) / (15m/car) = 80 cars.

I am going to make a similar argument here for counting standing wave states. Look at
Figure 2, which is a 2D grid of possible (nx, ny) combinations, and use your imagination to
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Figure 2: Possible n-combinations in 2D well.
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conceptualize a 3D grid of possible (nx, ny, nz) combinations (sorry, no 3D graphics for you).
Notice that each point on the ~n-grid corresponds to one corner of a unit-box (sides 1×1×1).
So if I were to ask how many points there are in a | ~n | value within a range (n, n+ dn), the
answer would just be the “volume” of that shell region in n-space, that is all combinations
of (nx, ny, nz) such that

# states =
1

8
( 4π n2 ) dn .

Turning that into a question about states in the wavelength range (λ, λ+ dλ),

|~n | = 2L

λ
=⇒ | dn | = 2L

λ2
dλ ,

# states =
1

8
4π

(
2L

λ

)2
2L

λ2
dλ = 4π L3 dλ

λ4
.

First, I will point out the L3 = V , the physical volume of the blackbody box. Next, I have
to toss in a new piece of information. As you may recall from Physics 142, all EM-radiation
comes in two independent bf polarization states, say 0◦ & 90◦, or righthand circular &
lefthand circular. This means that we have to double our answer. The end result is that

for wavelengths in the range (λ, λ+ dλ) ,
# states

V
=

8π

λ4
dλ . (17)

This density of states calculation was purely within the realm of classical Physics and
standard Electromagnetism. Planck’s next step was definitely not.

3.2 Planck’s Quantization hypothesis

Now Planck turned his attention to the walls of the box. These are emitting and absorbing
EM radiation constantly, maintaining the equilibrium distribution in the box. In order to
emit light at wavelength λ, the oscillators (atoms?) in the wall would have to vibrate at
the corresponding frequency, f = c/λ. In classical physics, that oscillator could emit any
amount energy at that frequency, and if you integrate over all possible frequencies, you get
an answer that people already knew gave infinite energy values at short wavelengths, the
so-called Ultraviolet catastrophe.

Planck made what he thought was a mathematical fix by taking a sum in stead of an integral,
He assumed that the oscillator at frequency f could only emit certain amounts of energy,

Eemission = h f or 2h f or 3h f or . . .

=
h c

λ
or

2h c

λ
or

3h c

λ
or . . . . = n · h c

λ
(18)
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This constant h was assumed to be small and to have units [ h ] = Energy · Time to make
the expression an energy. This is a fairly standard physicist trick – approximate a continuous
process by a discrete one to make the math easier, then take the limit as h→ 0.

But now he had a way to write out the all the possible energies En, associated with that os-
cillator. Now, defining the dimensionless quantity y to simplify our expressions and bringing
Boltzmann’s ideas to bear (all sums are over n : 0→∞), we can find probabilities and the
average energy for that oscillator,

En = n · h c
λ

=⇒ e−En / kT = ( e−hc / λkT )n = yn .

P (En) =
e−En / kT

Z
=

yn∑
yn

.

Ē =

∑
En y

n∑
yn

=
h c

λ

∑
n yn∑
yn

. (19)

But, we figured out those sums in Section 1.1. Using Eqns. (3) & (4),

Ē =
h c

λ
· y

(1− y)2
· 1− y

1
=
h c

λ
· y

1− y
,

Ē =
h c

λ
· e−hc / λkT

1− e−hc / λkT
=

h c

λ
· 1

ehc / λkT − 1
. (20)

So, we now know the average energy associated with the wavelength λ (Eqn. (20) ), and how
many states there are with that wavelength (Eqn. (17) ). Putting these together gives the
complete expression for the energy density in the Planck Blackbody Formula,

u(T, λ) · dλ =
8π h c

λ5
· 1

ehc / λkT − 1
· dλ . (21)

Note that the units are correct. The exponential ahas a dimensionless argument, hc / λkT ,
and the other factors give (Energy · Length) / (Length5) · Length = Energy /Length3.

3.3 Some comments on the Planck formuia

Let me highlight some aspects of the behavior of the Planck Radiation formula.

Small λ limit
For small values of λ, the exponent gets large, which makes the exponential term large,

h c

λ k T
� 1 =⇒ ehc / λkT � 1 ,

8π h c

λ5
· 1

ehc / λkT − 1
−→ 8π h c

λ5
· e−hc / λkT −→ 0 ,

because the exponential → 0 faster than λ−5 grows as λ→ 0.
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Large λ limit
For large values of λ, the exponent gets small, so the exponential term approaches 1,

h c

λ k T
� 1 =⇒ ehc / λkT ≈ 1 +

h c

λ k T
,

8π h c

λ5
· 1

ehc / λkT − 1
−→ 8π h c

λ5
· λ k T
h c

−→ 0 .

Maximum of the distribution
So, u(T, λ) → 0 is always non-negative, and it approaches 0 at each end of the λ range. It
must have an interior maximum. Finding it involves a numerical approximation, but I want
to focus on a particular aspect of the solution.

d

d λ
u(T, λ) = (8π h c) ·

[
−5

λ6
· 1

ehc / λkT − 1
− 1

λ5
· −h c
λ2 k T

· ehc / λkT

(ehc / λkT − 1)2

]
max: 0 =

8π h c

λ6 · (ehc / λkT − 1)2
·
[
−5 · (ehc / λkT − 1) +

h c

λ k T
· ehc / λkT

]
. (22)

For this Eqn. 22 to be 0, the square bracket must be zero. But all of those terms depend on
the dimensionless variable which I will call w,

With w =
h c

λ k T
, 0 = (w − 5) · ew + 5 . (23)

One lesson is a numerical argument – ew grows so fast that the only that way Eqn. (23) can
be 0 is if w is just a little bit less than 5. The more subtle lesson is that this is saying that

h c

λ k T
≈ 4.95 =⇒ λpeak ≈ 4.95 · h c

k T
. (24)

The peak has a wavelength value that is inversely proportional to the temperature. This
Wien Displacement Law was one of the experimental facts that Planck hoped to match.

Integral of the distribution
The integral over λ gives the total energy density at temperature T . Without doing the
integral, I want to point out something. I rewrite it in terms of the w defined above,

λ =
h c

w k T
=⇒ dλ = − h c

w2 k T
dw (as λ : 0→∞, w :∞→ 0.)

u(T ) =

ˆ ∞
λ=0

u(T, λ) dλ = −(8π h c)

ˆ 0

w=∞

(
h c

w k T

)−5
· 1

ew − 1

h c

w2 k T
dw

u(T ) =

[
8π k4

h3 c3

]
· T 4 ·

ˆ ∞
w=0

w3

ew − 1
dw . (25)
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Eqn. (25) divides u(T ) into three distinct terms, each with their own significance.

• The first term gives a numerical relationship in terms of three of the primary physical
constants of nature: k, h, & c.

• The second term gives the primary meaningful relationship between the two physical
quantities, u(T ) ∝ T 4. This captures the Stefan-Boltzmann Law, another experimental
fact that Planck’s theory needed to match.

• The third term is a dimensionless integral, i.e., it is a pure number. As it happens, its
value is π4/15, but that is almost inconsequential. The important lesson for us is that
we have isolated the crucial physics in the first two terms, and the rest is “just math”.

Reference: Modern Physics, by Randy Harris, Second Edition (1998). Appendix C.
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