
Physics 314, Spring 2020 Thermal Physics Hal M. Haggard

Homework 11
Due by 10pm on Wednesday, December 9th, 2020

Read Ch. 7. Notes.

1. Much like in last week’s homework, you can characterize the number fluctuations using the
grand partition function. Show that when a system is in thermal and diffusive equilibrium with a
reservoir, the average number of particles in the system is

N =
kT

Z
∂Z
∂µ

where the partial derivative is taken at fixed temperature and volume. Find a similar formula for
N2 in terms of a second derivative of Z. Use these results to show that the standard deviation of
N is

σN =

√
kT (∂N/∂µ).

Finally, apply this formula to an ideal gas, to obtain a simple expression for σN in terms of N .
Discuss your result briefly.

2. In Zak’s guest lecture he proved the useful relation F = −kT lnZ between the Helmholtz free
energy and the ordinary partition function. Use an analogous argument to prove that

Φ = −kT lnZ,

where Z is the grand partition function and Φ is the grand free energy introduced in the last
problem of our Hw8.

3. Consider two single-particle states, A and B, in a system of fermions, where εA = µ − x and
εB = µ + x; that is, level A lies below µ by the same amount that level B lies above µ. Prove
that the probability of level B being occupied is the same as the probability of level A being unoc-
cupied. In other words, the Fermi-Dirac distribution is “symmetrical” about the point where ε = µ.

4. Imagine a world in which that there existed a third type of particle with yet another kind of
statistics. These particles can share a single-particle state with one other particle of the same
type but no more. Thus the number of these particles in any state can be 0, 1, or 2. Derive the
distribution function for the average occupancy of a state by particles of this type, and plot the
occupancy as a function of the state’s energy, for several different temperatures.

5. Consider a degenerate electron gas in which essentially all of the electrons are highly relativis-
tic (ε� mc2), so that their energies are ε = pc (where p is the magnitude of the momentum vector).

(a) Modify the derivation given in class to show that for a relativistic electron gas at zero temper-
ature, the chemical potential (or Fermi energy) is given by µ = hc(3N/8πV )1/3.
(b) Find a formula for the total energy of this system in terms of N and µ.

6. A white dwarf star (see Schroeder’s Figure 7.12) is essentially a degenerate electron gas, with
a bunch of nuclei mixed in to balance the charge and to provide the gravitational attraction that
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holds the star together. In this problem you will derive a relation between the mass and the radius
of a white dwarf star, modeling the star as a uniform-density sphere. White dwarf stars tend to be
extremely hot by our standards; nevertheless, it is an excellent approximation in this problem to
set T = 0.

(a) Use dimensional analysis to argue that the gravitational potential energy of a uniform-density
sphere (mass M , radius R) must equal

Ugrav = −(constant)
GM2

R
,

where (constant) is some numerical constant. Be sure to explain the minus sign. The constant
turns out to equal 3/5; you can derive it by calculating the work needed to assemble the sphere,
shell by shell. [Note: I’m giving you the out of doing this by dimensional analysis, since it is faster,
but if you’d prefer to just derive this result, which has come up a few times in this class, feel free
to do that too.]
(b) Assuming that the star contains one proton and one neutron for each electron, and that the
electrons are nonrelativistic, show that the total (kinetic) energy of the degenerate electrons equals

Ukinetic = (0.0086)
h2M5/3

mem
5/3
p R2

.

The numerical factor can be expressed exactly in terms of π and cube roots and such, but it’s not
worth it.
(c) The equilibrium radius of the white dwarf is that which minimizes the total energy Ugrav+Ukinetic.
Sketch the total energy as a function of R, and find a formula for the equilibrium radius in terms
of the mass. As the mass increases, does the radius increase or decrease? Does this make sense?
(d) Evaluate the equilibrium radius for M = 2 × 1030 kg, the mass of the sun. Also evaluate the
density. How does the density compare to that of water?
(e) Calculate the Fermi energy and the Fermi temperature, for the case considered in part (d).
Discuss whether the approximation T = 0 is valid.
(f) Suppose instead that the electrons in the white dwarf star are highly relativistic. Using the re-
sult of the previous problem, show that the total kinetic energy of the electrons is now proportional
to 1/R instead of 1/R2. Argue that there is no stable equilibrium radius for such a star.
(g) The transition from the nonrelativistic regime to the ultrarelativistic regime occurs approxi-
mately where the average kinetic energy of an electron is equal to its rest energy, mc2. Is the
nonrelativistic approximation valid for a one-solar-mass white dwarf? Above what mass would you
expect a white dwarf to become relativistic and hence unstable?

7. A star that is too heavy to stabilize as a white dwarf can collapse further to form a neutron
star: a star made entirely of neutrons, supported against gravitational collapse by degenerate
neutron pressure. Repeat the steps of the previous problem for a neutron star, to determine the
following: the mass-radius relation; the radius, density, Fermi energy, and Fermi temperature of a
one-solar-mass neutron star; and the critical mass above which a neutron star becomes relativistic
and hence unstable to further collapse.
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