
Physics 314, Spring 2020 Thermal Physics Hal M. Haggard

Homework 5
Due by 10pm on Wednesday, October 7th, 2020

Reading: Schroeder Chap. 3, sections 3.1-3. Class notes.

1. We want to continue practicing our ability to compute multiplicities. Right before Julia’s guest
lecture I very briefly introduced the two-state paramagnet model, which consists of a long chain
of dipoles immersed in a magnetic field ~B (see Fig 2.1 of Schroeder). Each dipole is either aligned
(low energy state) or anti-aligned with the magnetic field. If the field points up we call the number
of aligned dipoles N↑ and the number of anti-aligned dipoles N↓, we also call the total number of
dipoles N .

(a) Without referring to your textbook try to find the multiplicity of the macrostate with N↑ dipoles
aligned with an applied magnetic field, Ω(N↑). [No problem if you get stuck, then you can refer to
Schroeder (pp 52-53), but try it yourself first, as it is important to practice our permutation and
combination counting skills.]

(b) Use Stirling’s result to find an approximate formula for this multiplicity of a two-state para-
magnet. Simplify this formula in the limit N↓ � N . This result should look very similar to your
answer to Schroeder’s Problem 2.17 from the last homework; explain why these two systems, in the
limits considered, are essentially the same.

Consider a two-state paramagnet with 1023 elementary dipoles, with the total energy fixed at zero
so that exactly half the dipoles point up and half point down.

(c) How many microstates are “accessible” to this system?

(d) Suppose that the microstate of this system changes a billion times per second. How many
microstates will it explore in ten billion years (the age of the universe)?

(e) Is it correct to say that, if you wait long enough, a system will eventually be found in every
“accessible” microstate? Explain your answer, and discuss the meaning of the word “accessible.”

2. The mathematics of the previous problem can also be applied to a one-dimensional random
walk: a journey consisting of N steps, all the same size, each chosen randomly to be either forward
or backward. (The usual mental image is that of a drunk stumbling along an alley.)

(a) Where are you most likely to find yourself, after the end of a long random walk?

(b) Suppose you take a random walk of 10,000 steps (say each a yard long). About how far from
your starting point would you expect to be at the end?

(c) A good example of a random walk in nature is the diffusion of a molecule through a gas; the
average step length is then the mean free path, as computed in Henry’s guest lecture (c.f. Section
1.7 of Schroeder). Using this model, and neglecting any small numerical factors that might arise
from the varying step size and the multidimensional nature of the path, estimate the expected net
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displacement of an air molecule (or perhaps a carbon monoxide molecule traveling through air)
in one second, at room temperature and atmospheric pressure. Discuss how your estimate would
differ if the elapsed time or the temperature were different. Check that your estimate is consistent
with the treatment of diffusion in Schroeder’s Section 1.7.

3. This problem gives an alternative approach to estimating the width of the peak of the multi-
plicity function for a system of two large Einstein solids.

(a) Use Stirling’s approximation to show that the multiplicity of an Einstein solid, for any large
values of N and q, is approximately

Ω(N, q) ≈

(
q+N
q

)q (
q+N
N

)2
√

2πq(q +N)/N

The square root in the denominator is merely large, and can often be neglected. However, it is
needed below. (Hint: First show that Ω = N

q+N
(q+N)!
q!N ! . Do not neglect the

√
2πN in Stirling’s

approximation.)

(b) Consider two identical Einstein solids, each with N oscillators, in thermal contact with each
other. Suppose that the total number of energy units in the combined system is exactly 2N . How
many different macrostates (that is, possible values for the total energy in the first solid) are there
for this combined system?

(c) Use the result of part (a) to find an approximate expression for the total number of microstates
for the combined system. (Hint: Treat the combined system as a single Einstein solid. Do not throw
away factors of “large” numbers, since you will eventually be dividing two “very large” numbers
that are nearly equal. Answer: 24N/

√
8πN .)

(d) The most likely macrostate for this system is (of course) the one in which the energy is shared
equally between the two solids. Use the result of part (a) to find an approximate expression for the
multiplicity of this macrostate. (Answer: 24N/(4πN).)

(e) You can get a rough idea of the “sharpness” of the multiplicity function by comparing your
answers to parts (c) and (d). Part (d) tells you the height of the peak, while part (c) tells you the
total area under the entire graph. As a very crude approximation, pretend that the peak’s shape
is rectangular. In this case, how wide would it be? Out of all the macrostates, what fraction have
reasonably large probabilities? Evaluate this fraction numerically for the case N = 1023.

4. On the last homework you found the multiplicity of an ideal gas restricted to “flatland”, that
is, to a 2D box. Find an expression for the entropy of this two-dimensional ideal gas. Express your
result in terms of U,A, and N .

5. (a) Use the Sackur-Tetrode equation to calculate the entropy of a mole of argon gas at room
temperature and atmospheric pressure. Why is the entropy greater than that of a mole of helium
under the same conditions?

2



Physics 314, Spring 2020 Thermal Physics Hal M. Haggard

(b) Show that during the quasistatic isothermal expansion of a monatomic ideal gas, the change in
entropy is related to the heat input Q by the simple formula

∆S =
Q

T
.

[Note: This only requires ideas from earlier in the course, not the Sackur-Tetrode equation.] Soon
we’ll prove that this formula is valid for any quasistatic process. Show, however, that it is not valid
for the free expansion process.

6. In Problem 2 you studied a random walk in 1D. Read through and complete the exercises in
Python and Jupyter 3: Random Walks.

(a) Once you understand how the random walk works, choose a number of times steps to run it
for and compute the displacement x of the walker at the end of this run. Repeat this 10 times,
each time saving the total displacement of the walker at the end of the run. After these 10 runs,
compute the mean of the square of the 10 displacements, that is, compute x2 for these 10 runs.
Save that.

Now increase the number of time steps and repeat the whole process 10 mores times. Do this for
7 different numbers of time steps.

Finally, make a plot in Python of the mean squared displacement x2 vs. the number of times steps
that you used for each of your runs. What do you notice about this plot? Can you think of a way
to model the relationship? If so, fit your results to your model and report the parameters of your fit.

Repeat everything you’ve done here, but now instead of running your code 10 times for each of
your chosen number of time steps, run it 1000 times for each of them. Of course, you will not want
to do this by hand. Now the model you want to use should be clearer.

(b) Now that you’ve got a handle on how to do a 1D random walk, figure out how to write your
own code for a 2D random walk. Steal anything you want from the 1D code. At each step the
walker should be able to step left or right or stay where it is, and step forward or backward or stay
where it is.
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