
Physics 314, Spring 2020 Thermal Physics Hal M. Haggard

Homework 6
Due by 10pm on Wednesday, October 14th, 2020

Reading: Schroeder Chap. 3, sections 3.4-6. Class notes.

1. Using the same method as in Schroeder’s text, calculate the entropy of mixing for a system of
two monatomic ideal gases, A and B, whose relative proportion is arbitrary. Let N be the total
number of molecules and let x be the fraction of these that are of species B. You should find

∆Smixing = −Nk[x lnx+ (1 − x) ln(1 − x)].

Check that this expression reduces to the one given in the text when x = 1/2.

2. The mixing entropy formula derived in the previous problem actually applies to any ideal gas,
and to some dense gases, liquids, and solids as well. For the denser systems, we have to assume
that the two types of molecules are the same size and that molecules of different types interact
with each other in the same way as molecules of the same type (same forces, etc.). Such a system
is called an ideal mixture. Explain why, for an ideal mixture, the mixing entropy is given by

∆Smixing = k ln

[(
N

NA

)]
,

where N is the total number of molecules and NA is the number of molecules of type A. Use Stir-
ling’s approximation to show that this expression is the same as the result of the previous problem
when both N and NA are large.

3. Describe a few of your favorite, and least favorite, irreversible processes. In each case, explain
how you can tell that the entropy of the universe increases.

4. For either a monatomic ideal gas or a high-temperature Einstein solid, the entropy is given by
Nk times some logarithm. The logarithm is never large, so if all you want is an order-of-magnitude
estimate, you can neglect it and just say S ∼ Nk. That is, the entropy in fundamental units is of
the order of the number of particles in the system. This conclusion turns out to be true for most
systems (with some important exceptions at low temperatures where the particles are behaving in
an orderly way). So just for fun, make a very rough estimate of the entropy of each of the following:
this book (a kilogram of carbon compounds); a moose (400 kg of water); the sun (2 × 1030 kg of
ionized hydrogen).

5. I hesitated to assign this problem initially, but with the Nobel prize this week, I can’t stop
myself. Enjoy!

A black hole is a region of space where gravity is so strong that nothing, not even light, can es-
cape. Throwing something into a black hole is therefore an irreversible process, at least in the
everyday sense of the word. In fact, it is irreversible in the thermodynamic sense as well: Adding
mass to a black hole increases the black hole’s entropy. It turns out that there’s no way to tell
(at least from outside) what kind of matter has gone into making a black hole.1 Therefore, the

1This statement is a slight exaggeration. Electric charge and angular momentum are conserved during black hole
formation, and these quantities can still be measured from outside a black hole. In this problem I’m assuming for
simplicity that both are zero.
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entropy of a black hole must be greater than the entropy of any conceivable type of matter that
could have been used to create it. Knowing this, it’s not hard to estimate the entropy of a black hole.

(a) Use dimensional analysis to show that a black hole of mass M should have a radius of order
GM/c2, where G is Newton’s gravitational constant and c is the speed of light. Calculate the
approximate radius of a one-solar-mass black hole (M = 2 × 1030 kg).

(b) In the spirit of the last problem, explain why the entropy of a black hole, in fundamental units,
should be of the order of the maximum number of particles that could have been used to make it.

(c) To make a black hole out of the maximum possible number of particles, you should use particles
with the lowest possible energy: long-wavelength photons (or other massless particles). But the
wavelength can’t be any longer than the size of the black hole. By setting the total energy of the
photons equal to Mc2, estimate the maximum number of photons that could be used to make a
black hole of mass M . Aside from a factor of 8π2, your result should agree with the exact formula
for the entropy of a black hole, obtained (e.g. by Stephen Hawking) through a much more difficult
calculation:

Sbh = k
8π2GM2

hc
.

(d) Refining the statement of part (a), it turns out that a black hole’s radius is Rbh = 2GM/c2

and so the area of the horizon is Abh = 4πR2
bh. On the other hand, Planck introduced a system

of units that has a fundamental length scale, the Planck length: `P =
√
h̄G/c3. Express the black

hole entropy in terms of k, Abh, and `P . This remarkably simple formula plays an outsized role in
our thinking that quantum gravity is relevant to the study of black holes.

(e) Calculate the entropy of a one-solar-mass black hole, and comment on the result.

(f) Use these results to calculate the temperature of a black hole, in terms of its mass M . (The
energy is Mc2.) Evaluate the resulting expression for a one-solar-mass black hole. Also sketch the
entropy as a function of energy, and discuss the implications of the shape of the graph.

6. Use the definition of temperature to prove the zeroth law of thermodynamics, which says that
if system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with
system C, then system A is in thermal equilibrium with system C. (If this exercise seems totally
pointless to you, you’re in good company: Everyone considered this ”law” to be completely ob-
vious until 1931, when Ralph Fowler pointed out that it was an unstated assumption of classical
thermodynamics.)

7. In Schroeder’s Section 2.5 he reviews a theorem on the multiplicity of any system with only
quadratic degrees of freedom: In the high-temperature limit where the number of units of energy
is much larger than the number of degrees of freedom, the multiplicity of any such system is
proportional to UNf/2, where Nf is the total number of degrees of freedom. Find an expression
for the energy of such a system in terms of its temperature, and comment on the result. How can
you tell that this formula for Ω, cannot be valid when the total energy is very small?
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