
Physics 314, Spring 2020 Thermal Physics Hal M. Haggard

Homework 9
Due by 10pm on Wednesday, November 18th, 2020

Reading: Schroeder Ch. 6, Secs. 6.1-5. Class notes.

1. Measured heat capacities of solids and liquids are almost always at constant pressure, not con-
stant volume. To see why, estimate the pressure needed to keep V fixed as T increases, as follows.

(a) First imagine slightly increasing the temperature of a material at constant pressure. Write
the change in volume, dV1, in terms of dT and the thermal expansion coefficient β introduced in
Problem 3 of Hw1.

(b) Now imagine slightly compressing the material, holding its temperature fixed. Write the change
in volume for this process, dV2, in terms of dP and the isothermal compressibility κT , defined
as

κT ≡ − 1

V

(
∂V

∂P

)
T

(This is the reciprocal of the isothermal bulk modulus defined in Problem 4 of Hw2.)

(c) Finally, imagine that you compress the material just enough in part (b) to offset the expansion
in part (a). Then the ratio of dP to dT is equal to (∂P/∂T )V , since there is no net change in
volume. Express this partial derivative in terms of β and κT . Then express it more abstractly in
terms of the partial derivatives used to define β and κT . For the second expression you should
obtain (

∂P

∂T

)
V

= − (∂V/∂T )P
(∂V/∂P )T

.

This result is actually a purely mathematical relation, true for any three quantities that are related
in such a way that any two determine the third.

(d) Compute β, κT , and (∂P/∂T )V for an ideal gas, and check that the three expressions satisfy
the identity you found in part (c).

(e) For water at 25◦C, β = 2.57 × 10−4 K−1 and κT = 4.52 × 10−10 Pa−1. Suppose you increase
the temperature of some water from 20◦C to 30◦C. How much pressure must you apply to prevent
it from expanding? Repeat the calculation for mercury, for which (at 25◦C) β = 1.81 × 10−4 K−1

and κT = 4.04 × 10−11 Pa−1. Given the choice, would you rather measure the heat capacities of
these substances at constant V or at constant P?

2. Use one of the Maxwell relations you derived and the third law of thermodynamics to prove
that the thermal expansion coefficient β must be zero at T = 0. (If you don’t remember β return
to problem 3 of Hw1.)

You’ve now accumulated many results on partial derivatives, adding in a little more partial-
derivative trickery, you can derive a completely general relation between CP and CV . The cal-
culation has several steps, so we’ll break it up between problems 3 and 4.
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3. (a) Use the original thermodynamic identity to derive the heat capacity formula

CV = T (∂S/∂T )V ,

which is occasionally more convenient than the more familiar expression in terms of U . Then derive
a similar formula for CP , by first writing dH in terms of dS and dP .

(b) With the heat capacity expressions from part (a) in mind, first consider S to be a function of
T and V . Expand dS in terms of the partial derivatives (∂S/∂T )V and (∂S/∂V )T . Note that one
of these derivatives is related to CV .

(c) To bring in CP , consider V to be a function of T and P and expand dV in terms of partial
derivatives in a similar way. Plug this expression for dV into the result of part (b), then set dP = 0
and note that you have derived a nontrivial expression for (∂S/∂T )P . This derivative is related to
CP , so you now have a formula for the difference CP − CV .

4. (a) Write the remaining partial derivatives in terms of measurable quantities using a Maxwell
relation and the result of Problem 1 above. Your final result should be

CP = CV +
TV β2

κT
.

(b) Check that this formula gives the correct value of CP − CV for an ideal gas.

(c) Use this formula to argue that CP cannot be less than CV .

(d) Use the data in Problem 1 above to evaluate CP − CV for water and for mercury at room
temperature. By what percentage do the two heat capacities differ?

(e) Schroeder’s Figure 1.14 shows measured values of CP for three elemental solids, compared to
predicted values of CV . It turns out that a graph of β vs. T for a solid has same general appearance
as a graph of heat capacity. Use this fact to explain why CP and CV agree at low temperatures
but diverge in the way they do at higher temperatures.

5. The density of ice is 917 kg/m3. (a) Use the Clausius-Clapeyron relation to explain why the
slope of the phase boundary between water and ice is negative.

(b) How much pressure would you have to put on an ice cube to make it melt at −1◦C?

(c) Approximately how deep under a glacier would you have to be before the weight of the ice
above gives the pressure you found in part (b)? (Note that the pressure can be greater at some
locations, as where the glacier flows over a protruding rock.)

(d) Make a rough estimate of the pressure under the blade of an ice skate, and calculate the melting
temperature of ice at this pressure. Some authors have claimed that skaters glide with very little
friction because the increased pressure under the blade melts the ice to create a thin layer of water.
What do you think of this explanation?
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6. (a) As you can see from Schroeder’s Figure 5.20, the critical point is the unique point on the
original van der Walls isotherms (before the Maxwell construction) where both the first and second
derivatives of P with respect to V (at fixed T ) are zero. Use this fact to show that

Vc = 3Nb, Pc =
1

27

a

b2
, and kTc =

8

27

a

b
.

(b) Use the result of the previous part and the approximate values of a and b given on p181 of
Schroeder’s book to estimate Tc, Pc, and Vc/N for N2, H2O, and He. (Tabulated values of a and b
are often determined by working backward from the measured critical temperature and pressure.)
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