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Previously we have used the Einstein Model
• Solid crystal model with atoms treated as independent harmonic oscillators vibrating with 

the same frequency

• Allowed calculation of the vibrational energy 𝑈 & heat capacity 𝐶! =
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• The continuous calculation of the general heat capacity can be found as follows:
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-predicts 𝐶% = 𝑁𝑘 in the high temperature limit
-predicts exponential decay in the 𝑇→0 limit𝐶! =
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Debye’s theoretical solid model

• Proposes that we must account for both low-frequency modes 
of oscillation in which large groups of atoms are all moving 
together, and high-frequency modes, in which atoms are 
moving opposite to their neighbors. 
• These modes of oscillation are reminiscent of the modes of the 

electromagnetic field from blackbody radiation.
• These mechanical oscillations are referred to as ‘sound waves’ 

by Schroeder, they behave quite similarly to light waves, but 
with key differences; sound waves travel at relatively low 
speeds 𝑐1, they have 3 polarizations, & their wavelengths are 
dependent on the atomic spacing of the solid.



‘Sound Waves’ & U

• 𝜖 = ℎ𝑓 = 23!
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67
• Thought of as “Phonons” 

• Average number of energy units 
contained in the solid is given 
by the Planck distribution: 
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Transitioning U into an integral in spherical coordinates
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Derivation of vibrational energy using Debye Theory 
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𝐶* in the extreme temperature limits of 
the Debye Model 
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(integral calculated by Schroeder, see appendix B.5)



Derivation of the general formula for heat 
capacity under Debye Theory
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Derivation of the general formula for heat 
capacity under Debye Theory
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Finally, we can plot our newly defined 𝐶!
and compare against our previous model
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In Summary
• Both models give the same result in the high temperature limit, 

demonstrating that at high temperatures all the oscillators essentially have 
the same energy
• The Debye model gives correct results at the low temperature limit 

because it accounts for both low and high frequency modes of oscillation  
• The Debye model is used across solid state physics as it gives accurate 

predictions while being ridiculously simple to work with once you know the 
𝑐! for the material you are working with.
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