Today

- I. Questions from the exam?
- II. Last Time
- III. Multiplicities and Entropy
- IV. Classical Mechanics, Quantum Mechanics, and Entropy
- I. More discussion of the exam in our homework sessions.
- II. Julia was teaching us how to count. She introduced us to:

The choose function:
$$
\binom{p}{q} = \frac{p!}{(p-q)!q!}
$$
,

which counts the number of ways of drawing q things from p total options, where we only care about the final combination.

Introduced the Einstein solid: a collection of N harmonic oscillators containing *q* units of energy.

I. More discussion of the exam in our homework sessions.

II. Julia was teaching us how to count. She introduced us to:

The choose function:
$$
\binom{p}{q} = \frac{p!}{(p-q)!q!}
$$
,

which counts the number of ways of drawing q things from p total options, where we only care about the final combination.

Introduced the Einstein solid: a collection of N harmonic oscillators containing q units of energy. Showed us how to compute the multiplicity:

$$
\Omega(N,q) = \binom{N+q-1}{q}.
$$

A macrostate is the specification of the macroscopic properties of the system. In the Einstein solid this is just N and q .

II.

A macrostate is the specification of the macroscopic properties of the system. In the Einstein solid this is just N and q .

A microstate is the complete of all the microscopic degrees of freedom of the system.

Then, the multiplicity of system is the number of microstates associated to a particular macrostate: $\Omega = \Omega(N, q)$ is the number of microstates associated to the macrostate (N, q) .

Boltzmann defined the <u>entropy of a macrostate</u> as the logarithm of its multiplicity:

 $S = k \ln \Omega$.

III. Classical Mechanics Newton: $a = \frac{a}{l} \frac{\partial}{\partial t} = \frac{1}{2}$ 2nd order ODE, Cartesian coord.s, initial data $(x(0), \dot{x}(0))$. Lagrange: $\frac{u}{u} \left(\frac{\partial L}{\partial t} \right) = \frac{\partial L}{\partial t}$ 2nd order ODE, general coord.s, here $L \equiv T - U$, initial data $(q(0), \dot{q}(0))$ d^2x *dt*² = *F*(*x*) *m d dt* (∂*L* $\left(\frac{\partial}{\partial \dot{q}}\right)$ = ∂*L* ∂*q*

Huge advantages! General coords are very adaptable, a single scalar determines all the equations of motion.

Hamiltonian: General momentum $p \equiv \frac{\partial P}{\partial p}$. Introduce the H amiltonian'. $H(q, p) = p\dot{q} - L = T + U$, The last equality holds whenever (roughly) the coords. and L are tindep. ∂*L* $\overline{\partial \dot{q}}$

III. Classical Mechanics

Hamiltonian: General momentum $p \equiv \frac{\partial E}{\partial r}$. Introduce the ∂*L* $\overline{\partial \dot{q}}$

`Hamiltonian'. $H(q, p) = p\dot{q} - L(q, \dot{q}) = T + U$,

The last equality holds whenever (roughly) the coords. and L are tindep.

The equations of motion are called Hamilton's equations $\dot{q} = \frac{\partial H}{\partial x}$ $\dot{p} = -\frac{\partial H}{\partial y}$. $\dot{q} =$ ∂*H* ∂*p* .
ŋ $\dot{p} = -\frac{\partial H}{\partial x}$ ∂*q*

q and *p* are independent variables! 1st order ODEs, general coords. Initial data are $(q(0), p(0))$ Again we have no constraint like $\dot{q} = p$.

Call the space of (q_i, p_i) , $i = 1, 2, \dots, f$, the "phase space" of the system. Uniqueness of solutions of 1st order ODEs implies that trajectories in phase space never cross.

III. Classical Mechanics

Call the space of (q_i, p_i) , $i = 1, 2, \dots, f$, the "phase space" of the system. Uniqueness of solutions of 1st order ODEs implies that trajectories in phase space never cross.

Example: Harmonic oscillator with mass
$$
m = 1
$$

\n
$$
T = \frac{p^2}{2m} = \frac{p^2}{2}, U = \frac{1}{2}kq^2 = \frac{1}{2}m\omega^2 q^2 = \frac{1}{2}\omega^2 q^2,
$$
\n
$$
H(q, p) = T + U = \frac{1}{2}(p^2 + \omega^2 q^2).
$$

Let's check . So, we've just proved conservation of energy in great generality: $H = E$. *dH dt* = ∂*H* ∂*q dq dt* + ∂*H* ∂*p dp dt* $= \omega^2 q \dot{q} + p \dot{p} = - \dot{p} \dot{q} + \dot{q} \dot{p} = 0$

III. Classical Mechanics

Proved conservation of energy in great generality:

By purely geometrical means we've picked out the orbit of the harmonic oscillator. Preview: we'll use these tools first to picture what quantum mechanics tells us about the allowed orbits and then to come to a geometrical understanding of entropy.