
I. Questions from the exam? 
II. Last Time 
III. Multiplicities and Entropy 
IV. Classical Mechanics, Quantum Mechanics, and Entropy

Today

I. More discussion of  the exam in our homework sessions.  
II. Julia was teaching us how to count. She introduced us to: 

The choose function: , 

which counts the number of  ways of  drawing  things from  total 
options, where we only care about the final combination.  

Introduced the Einstein solid: a collection of   harmonic oscillators 
containing  units of  energy. 
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I. More discussion of  the exam in our homework sessions.  
II. Julia was teaching us how to count. She introduced us to: 

The choose function: , 

which counts the number of  ways of  drawing  things from  total 
options, where we only care about the final combination.  

Introduced the Einstein solid: a collection of   harmonic oscillators 
containing  units of  energy. Showed us how to compute the 
multiplicity: 

. 

A macrostate is the specification of  the macroscopic properties of  
the system. In the Einstein solid this is just  and .  
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II.  
A macrostate is the specification of  the macroscopic properties of  
the system. In the Einstein solid this is just  and .  

A microstate is the complete of  all the microscopic degrees of  
freedom of  the system.  

Then, the multiplicity of  system is the number of  microstates 
associated to a particular macrostate:  is the number of  
microstates associated to the macrostate . 

Boltzmann defined the entropy of  a macrostate as the logarithm of  
its multiplicity:  

.

N q

Ω = Ω(N, q)
(N, q)

S = k ln Ω



III. Classical Mechanics  

Newton:      2nd order ODE, Cartesian coord.s, 

initial data ( ).  

Lagrange:    2nd order ODE, general coord.s, here 

, initial data ( ) 

Huge advantages! General coords are very adaptable, a single scalar 
determines all the equations of  motion. 

Hamiltonian: General momentum . Introduce the 

`Hamiltonian’.  ,  
The last equality holds whenever (roughly) the coords. and  are t-
indep.

a =
d2x
dt2

=
F(x)
m

x(0), ·x(0)
d
dt ( ∂L

∂ ·q ) =
∂L
∂q

L ≡ T − U q(0), ·q(0)

p ≡
∂L
∂ ·q

H(q, p) = p ·q − L = T + U
L



III. Classical Mechanics  

Hamiltonian: General momentum . Introduce the 

`Hamiltonian’.  ,  
The last equality holds whenever (roughly) the coords. and  are t-
indep. 

The equations of  motion are called Hamilton’s equations 

. 

 and  are independent variables! 1st order ODEs, general coords. 
Initial data are ( ) Again we have no constraint like . 

Call the space of  , the “phase space” of  the 
system. Uniqueness of  solutions of  1st order ODEs implies that 
trajectories in phase space never cross. 

p ≡
∂L
∂ ·q

H(q, p) = p ·q − L(q, ·q) = T + U
L

·q =
∂H
∂p

·p = −
∂H
∂q

q p
q(0), p(0) ·q = p

(qi, pi), i = 1,2,...,f



III. Classical Mechanics  
Call the space of  , the “phase space” of  the 
system. Uniqueness of  solutions of  1st order ODEs implies that 
trajectories in phase space never cross.  

Example: Harmonic oscillator with mass  

, , 

.  

Let’s check 

.  

So, we’ve just proved conservation of  energy in great generality: 
.

(qi, pi), i = 1,2,...,f

m = 1

T =
p2

2m
=

p2
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1
2
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1
2
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1
2

ω2q2

H(q, p) = T + U =
1
2

(p2 + ω2q2)

dH
dt

=
∂H
∂q

dq
dt

+
∂H
∂p

dp
dt

= ω2q ·q + p ·p = − ·p ·q + ·q ·p = 0

H = E



III. Classical Mechanics  
Proved conservation of  energy in great generality: 

.H =
1
2

(ω2q2 + p2) = E

q

p

H = E0

By purely geometrical means we’ve picked out the orbit of  the 
harmonic oscillator. Preview: we’ll use these tools first to picture 
what quantum mechanics tells us about the allowed orbits and then 
to come to a geometrical understanding of  entropy. 


