
I. Last Time 
II. Classical Mechanics, Quantum Mechanics, and Entropy 
III. Probabilities and Physics

Today

I. Reviewed Mechanics: Lagrangian mechanics works in any 
coordinates whatsoever. In Hamiltonian mechanics the equations 
of  motion become 1st order ODEs 

. 

We also found that these equations led to conservation of  energy 
(whenever  is time independent). 

The first order nature of  these equations means that trajectories in 
phase space  never cross. 
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I. Classical Mechanics  
Proved conservation of  energy in great generality: 

. 

This last formulation of  mechanics, Hamilton’s, is particularly useful 
to us because of  its relations to Quantum Mechanics. I want to 
explain the “Old Quantum Theory”
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This is a `level set’ of the 
Hamiltonian function.

Amelie (Emmy) Noether



II. Old Quantum Theory 

This began with Bohr’s description of  the atom. In thinkin about the 
electron as a sort of  matter wave, Bohr realized that it should be 
subject to boundary conditions.  

This was accompanied by a remarkable discovery that angular 
momentum should take on a discrete set of  values: 

. 
Here  is Planck’s constant 

L = nℏ n = 1,2,3,⋯
ℏ ℏ = 1.05 × 10−34m2kg/s



II. Old Quantum Theory 

Physical Input 1: Observables (like ) that appeared to be continuous 
classically can be discrete, taking only certain values, in quantum 
mechanics.  

Which observables? A hunt began for which observables and why. 

In a 2D phase space the result is easy to state. Consider a classical 
observable  (e.g. energy), if  the level set  (where  is 
some value) captures a finite area in the phase space, then the 
observable  is quantized. 

L
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They even discovered an 
approximation for the 

quantized values of  the 
observable. The area 

inside  is A = a

Area = ∫Ω
dqdp

= ∮∂Ω
pdq

The approximation that they was  
.S(A) ≡ ∮ pdq = (n +

1
2

)h = 2π(n +
1
2

)ℏ



II. Old Quantum Theory 

Let’s try it on our harmonic oscillator:  

The area of  an ellipse is . Then, 

.  

The energy of  the harmonic oscillator is quantized!
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II. Old Quantum Theory 
Physical input 2 (uncertainty principle): Measurement of  a system 
inevitably disrupts its state; so you can’t know the position and the 
momentum of  a particle to arbitrary precision: 

. 

It turns out that there are physical states that saturate this bound  (so-
called coherent states). These states divide the phase space up into 
Planck sized cells too.  

Thus in the Quantum picture we should 
think of  the phase space as being made  
up of  tiny Planck sized cells, not of  points. 

For us, this is the most important thing to 
learn from Quantum Theory. 

ΔqΔp ≥
ℏ
2

q

p
ℏ/2ℏ/2



II. Old Quantum Theory 
Physical input 3: Nature is intrinsically probabilistic.  Describe 
quantum states by smooth functions  and expected outcomes of  
measurements, say , by  

. 

(Don’t need to know this, it’s only here for completeness.) 

III. How is all of  this useful to us?  

We can answer this through the terminology of  microstates and 
macrostates. This quantum foundation is going to allow us to think 
about multiplicities. 
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