
I. Last Time 
II. Probabilities and Physics & The Fundamental Postulate of  

Statistical Mechanics 
III. Return to the Idea Gas 

Today

I. Reviewed Mechanics: Lagrangian mechanics works in any 
coordinates whatsoever. In Hamiltonian mechanics the equations 
of  motion become 1st order ODEs 

. 

We also found that these equations led to conservation of  energy 
(whenever  is time independent). 

The first order nature of  these equations means that trajectories in 
phase space  never cross. 
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I. Old Quantum Theory gives us a way to find the quantized 
energy of  any particular observable  if  captures finite 
area in phase space:  

. 

This is a general property of  quantum states. The uncertainty 
principle tells us that we cannot localize quantum states better than 

to a Planck cell in the phase space.  

Quantum Mechanics breaks phase space up into Planck sized cells. 
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I. Quantum Mechanics breaks phase space up into Planck sized 
cells.  

II. Fundamental Postulate of  Statistical Mechanics: An isolated 
system in equilibrium is equally likely to be in any of  its 
accessible states.  

Here accessible is doing the heavy lifting of  telling us that we have 
macroscopic constraints on our system. The accessible states are 
those that satisfy the constrains. 

In this example, we’ve constrained the energy to lie between  and 
.
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II. Ex. Our oscillator again (take )  

. 

Measured to have an energy in the interval .  

To talk about this we think of  an ensemble: pictured at right.. Many 
instances of  the oscillator, all with energy in , but having 
different states of  motion. 
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Tons of Planck cells 

Hence tons of 
Quantum states

Fundamental Postulate: 
All of these are equally 

likely! (as long as )E ∈ [E, E + ΔE]



II. Probabilities and Physics: 

Def:  is total number of  states with energy in .  
(Microcanonical Ensemble). We’ll often approximate the Range 
either by   or by infinitely precise and just .  

Similarly, let  be the number of  states with energy in 
 and with . You’ve seen an example of  this with 

 units of  energy and with  oscillators, the Einstein solid.  

What’s the probability of  the macroscopic ? 

. 

“All states are equally likely, so probability of  finding  is just the 
fraction of  states that have .”
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III. Return of  the Ideal Gas 

An ideal gas is a collection of  a large number of  molecules or atoms 
held in a box of  volume  and with some total energy .   

Let’s consider one gas molecule first. This molecule can be anywhere 
in the box, so it has a spatially allowed volume of  . The allowed 
volume in momentum space will take some work to pin down, so for 
the moment let’s just call it . Then phase space volume is 

. 
To get the momentum space volume  we’re going to need to 
understand the energy constraint. What is our constraint explicitly in 
terms of  the momenta?  
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III. Return of  the Ideal Gas 
To get the momentum space volume  we’re going to need to 
understand the energy constraint. What is our constraint explicitly in 
terms of  the momenta?  

 

This is a sphere of  radius  in momentum space. Hence the 
allowed surface area is: .  

We’d also like to understand the proportionality constant above:  
Both units and the analysis that we’ve done over the last week tell us 
that we have to divide by the volume in phase space of  a single 
quantum state, which is . Hence we get 
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