
I. Last Time 
II. Mathematical Preliminaries: The Gamma Function & Sterling’s 

Approximation 
III. Return to the Idea Gas: Complete Our Derivation of  the 

Sackur-Tetrode Equation

Today

I. Phase space , in old quantum theory an observable  
will have quantized values if  its level curves capture finite areas 
in the phase space.  

We also found that the number of  quantum states is given by the 
area captured in phase space divided by .  

Fundamental postulate of  Stat. Mech.: All accessible microstates are 
equally probable when a system is in thermal equilibrium. 
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II. Recall the Gaussian integral 

. 

Taking the derivative with respect to  

. 

We want to leverage this idea to understand factorials in a much 
richer context:  

. 

Derivative with respect to  is 

, ,…. 

The pattern is exactly that of  the factorial, setting , gives 
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II. 
The pattern is exactly that of  the factorial, setting , gives 

 

Taking this integral as a definition of  the factorial, we realized that 
we can define non-integer factorials.  This allows us to extend the 
definition of   off  of  the integers.   

With this realization of  a much broader context for the definition of  
the factorial people re-named it the “Gamma function”: 

. 

It’s a quick check that I leave to you that  
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II. The Sterling Approximation 

The Sterling approximation gives the value of  the factorial for large 
inputs:   

. 
If  we take the natural log of  both sides we get 

. 
Let’s derive this quickly, consider 

 

n! ≈ nne−n 2πn

ln n! ≈ (n ln n) − n

ln n! = ln(n ⋅ (n − 1)⋯2 ⋅ 1) = ln n + ln(n − 1) + ⋯ + ln 2 + ln 1



II. The Sterling Approximation 
 

Approximate this sum by the integral, 

.

ln n! = ln(n ⋅ (n − 1)⋯2 ⋅ 1) = ln n + ln(n − 1) + ⋯ + ln 2 + ln 1
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II. Deriving the surface “area” of  a sphere in any number of  
dimensions 

The result for a -dimensional hypersphere 

. 

The case  is for the circle living in the plane, this gives 
. You can also check , I’ll leave that to you.  

Neat idea is to assume the general case works 
At first and check that it works for larger d: 
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II. Now we proceed by induction 

 

 

Note that 
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So we have 
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