
I. Office Hour Juggle: today 4:30-5:30pm  
II. Last Time 
III. Return to the Idea Gas: Complete Our Derivation of  the 

Sackur-Tetrode Equation

Today

I. Derived the surface “area” of  the hypersphere 

. 

In odd numbers of  dimensions we have to take fraction factorials, to 
do this we use the Gamma function 

 
The definition of  the  function is 

.
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I. We also reviewed a particularly useful approximation, Sterling’s 
approximation 

. 

We had considered a single particle in a box of  volume , with a 
fixed total energy . What’s the multiplicity of  this particle 

classically? Infinite! Because all the points are distinguishable 
classically.  

Fortunately, Quantum Mechanics saves us here! It cuts the number 
of  states down to a finite number!  Here the multiplicity is  
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II. Let’s try to see how to generalize the formula  to any 

number of  particles. First consider two particles 

. 

What is the allowed momentum space for two particles?  
. 

What is this equation an equation of ? This one is the equation of  
what Mathematicians would call the 5-sphere. In Schroeder’s 
notation this is . From our last class we know that this 
hypersphere’s hyper volume is . There’s one remaining 
subtlety, if  the particles are indistinguishable, then we should really 
have 

.
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II. . 

Let’s try the  particle case: 

 

Let’s figure out the allowed momentum space: what’s the dimension 
of  the hypersphere of  interest? This is a -dimenstional 

hypersphere. This lives in a space of  . Then we have 

 

A nice way of  looking at this formula is to suppress the numerical 
factors 

.
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II. Entropy of  an Ideal Gas: 

. 

We take k ln of  each side to get the entropy: 
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Upon further investigation, I didn’t make any algebra errors in this 
derivation… see if  you can figure out what actually happened. 

[Answer on next slide.]



Upon further investigation, I didn’t make any algebra errors in this 
derivation. Rather, when we first got the multiplicity, I didn’t make 
one of  the approximations that Schroeder does. He approximates 
the multiplicity this way: 

, 

Where he also drops the factor of  2 in the numerator. This is a cheat 
that isn’t that well motivated at this point. He’s doing it because he 
knows the answer and wants to get it exactly right. We’ll derive this 
formula again later in the course and won’t have to make any such 
cheat!
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