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Today

I. Talked about the width of  multiplicity functions: 
Considered  of  Einstein solid in the high temperature limit. 
We were able to approximate it by a gaussian centered on equal 
energy between two copies of  the Einstein solid. We found that the 
gaussian is super narrowly peaked around its central value 
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I. Why does the sharpness of  the multiplicity matter? 
Systems tend be in the equilibrium and their fluctuations away from 
it are very small.  

This led us to a new law of  thermodynamics, the 2nd law of  
thermodynamics, which states that systems tend to evolve towards 
the largest multiplicity state. Why? Well, the largest multiplicity state 
is far, far, vastly, more probably than other states. So, this is just a 
statement of  probabilities. Nonetheless from this point forward in the 
course, we’ll treat this as fundamental law. We get away with this 
because the multiplicity is so narrowly peaked.  

We can also formulate this in terms of  entropy ,  where we 
say 

.

S = k ln Ω

ΔS ≥ 0



II. The idea gas entropy we found was 

, (Sackur-Tetrode Eqn). 

Let’s find a case where the entropy of  an ideal gas increases.  We 
could hold the number of  particles fixed and don’t change the 
internal energy, we can increase entropy by increasing the volume. 
Then 

   (fixed ). 

We added heat into the system in this process and heat is always 
accompanied by entropy.  
III. Let’s consider another type of  process.  
At some time we pierce the barrier and the 
gas is free to expand. 
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III. Let’s consider another type of  process. At some time we pierce 
the barrier and the gas is free to expand. We didn’t add any heat to 
the system or doing any work on it, so  

. 
There’s also no change in number of  particles, so our formula from 
II. applies and the change in entropy is  

. 

IV. Entropy of  Mixing. Suppose I had a container divided in two and 
that I put different gases on each side of  the division. 

ΔU = Q + W = 0 + 0 = 0
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IV. Entropy of  Mixing. Suppose I had a container divided in two and 
that I put different gases on each side of  the division.  
Let’s begin by considering one of  the gases  

. Similarly 

for the second gas. Then, the total 
change is 

. 
This is called the entropy of  
mixing.  

Now, let’s analyze this again in more detail.  
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ΔStotal = ΔSA + ΔSB = 2Nk ln 2
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IV. Now, let’s analyze this again in more detail.  

. 

The total entropy is the sum of  the  
entropy of  the two types 

 

and this is approximately double 
either constituents entropy. What 
happens when we double , say that 
of  the helium, in the ST eqn.? Note 
The factor of  2 in the denominator when we double , this changes 
the entropy by . The distinction of  these two 
formulas is evidence for the fact that fundamental particles are 
indistinguishable. (When you don’t treat them that way you get a 
paradox of  entropy, which is called Gibb’s paradox.) 
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Aside on the “width” of  a distribution:  
I used the “standard deviation” 

, 
Which is when we have fallen by .  
Schroeder used the “characteristic width”: falls by 1/e of  its 
maximum value.  
Also be careful of  full vs. half  widths. 
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